Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose\({\rm{S}}\) and\({\rm{C}}\) satisfy the hypotheses of Stokes’ Theorem and \({\rm{f,g}}\) have continuous second-order partial derivatives. Use Exercises \(22\) and \(24\) in Section \(13.5\) to show the following.

(a)\(\int_{\rm{C}} {\left( {{\rm{f}}\nabla {\rm{g}}} \right) \cdot {\rm{dr = }}} \int {\int_{\rm{s}} {\left( {\nabla {\rm{f \times }}\nabla {\rm{g}}} \right) \cdot } } {\rm{dS}}\)

(b) \(\int_{\rm{C}} {\left( {{\rm{f}}\nabla {\rm{f}}} \right) \cdot {\rm{dr = }}} 0\)

(c) \(\int_{\rm{C}} {\left( {{\rm{f}}\nabla {\rm{g + g}}\nabla {\rm{f}}} \right) \cdot {\rm{dr = }}} 0\)

Short Answer

Expert verified

(a) When \({\rm{S}}\) and \({\rm{C}}\) satisfy the hypotheses of Stokes’ Theorem and \({\rm{f,g}}\) have continuous second-order partial derivatives, then it is proved that \(\int_{\text{C}} {{\text{(f}}\nabla {\text{g)}}} \cdot {\text{dr = }}\iint_{\text{S}} {{\text{(}}\nabla {\text{f }} \times {\text{ }}\nabla {\text{g)}}} \cdot {\text{dS}}\) .

(b)When \({\rm{S}}\) and \({\rm{C}}\) satisfy the hypotheses of Stokes’ Theorem and \({\rm{f,g}}\) have continuous second-order partial derivatives, then it is proved that \(\int_{\rm{C}} {{\rm{(f}}\nabla {\rm{g)}}} \cdot {\rm{dr = 0}}\).

(c)When \({\rm{S}}\) and \({\rm{C}}\) satisfy the hypotheses of Stokes’ Theorem and \({\rm{f,g}}\) have continuous second-order partial derivatives, then it is proved that \(\int_{\rm{C}} {{\rm{(f}}\nabla {\rm{g + g}}\nabla {\rm{f)}}} \cdot {\rm{dr = 0}}\).

Step by step solution

01

Concept Introduction

According to Stoke's theorem "The surface integral of the curl of a function over a surface limited by a closed surface is equivalent to the line integral of the particular vector function around that surface,".

02

Calculation for first integral

(a)

Using Stokes' Theorem, it can be written –

\(\int_{\text{C}} {{\text{(f}}\nabla {\text{g)}}} \cdot {\text{dr = }}\iint_{\text{S}} {{\text{curl}}}{\text{(f}}\nabla {\text{g)}} \cdot {\text{dS}}.....{\text{(1)}}\)

Nowuse the identity –

\(\begin{aligned}{}{\rm{curl(fF) = f curl F + (}}\nabla {\rm{f) \times F}}\\{\rm{curl(f}}\nabla {\rm{g) = f curl(}}\nabla {\rm{g) + }}\nabla {\rm{f \times }}\nabla {\rm{g}}\end{aligned}\)

Since the curl of a gradient vector field is\({\rm{0}}\), it is obtained –

\({\rm{curl(f}}\nabla {\rm{g) = }}\nabla {\rm{f \times }}\nabla {\rm{g}}\)

Then, equation\({\rm{(1)}}\)can be written as –

\(\int_{\text{C}} {{\text{(f}}\nabla {\text{g)}}} \cdot {\text{dr = }}\iint_{\text{S}} {{\text{(}}\nabla {\text{f x }}\nabla {\text{g)}}} \cdot {\text{dS}}\)

Therefore, it is proved that

\(\int_{\text{C}} {{\text{(f}}\nabla {\text{g)}}} \cdot {\text{dr = }}\iint_{\text{S}} {{\text{(}}\nabla {\text{f x }}\nabla {\text{g)}}} \cdot {\text{dS}}\) .

03

Calculation for second integral

(b)

Using Stokes' Theorem, it can be written –

\(\int_{\text{C}} {{\text{(f}}\nabla {\text{f)}}} \cdot {\text{dr = }}\iint_{\text{S}} {{\text{curl}}}{\text{(f}}\nabla {\text{f)}} \cdot {\text{dS}}.....{\text{(1)}}\)

Now use the identity –

\({\rm{curl(fF) = f curl F + (}}\nabla {\rm{f) \times F}}\)

Where\({\rm{F}}\)will be replaced by\(\nabla {\rm{f}}\)–

\({\rm{curl(f}}\nabla {\rm{f) = f curl }}\nabla {\rm{f + }}\nabla {\rm{f \times }}\nabla {\rm{f}}\)

Since the curl of a gradient vector field is\({\rm{0}}\)and\({\rm{v \times v = 0}}\)for every vector\({\rm{v}}\), it is obtained –

\({\rm{f curl }}\nabla {\rm{f}} = 0\)and\(\nabla {\rm{f \times }}\nabla {\rm{f}} = 0\).

Then, equation\({\rm{(1)}}\)can be written as –

\(\int_{\text{C}} {{\text{(f}}\nabla {\text{f)}}} \cdot {\text{dr = }}\iint_{\text{S}} {\text{0}} \cdot {\text{dS = 0}}\)

Therefore, it is proved that \(\int_{\rm{C}} {{\rm{(f}}\nabla {\rm{g)}}} \cdot {\rm{dr = 0}}\).

04

Calculation for third integral

(c)

Using Stokes' Theorem, it can be written –

\(\int_{\text{C}} {{\text{(f}}\nabla {\text{g + g}}\nabla {\text{f)}}} \cdot {\text{dr = }}\iint_{\text{S}} {{\text{curl}}}{\text{(f}}\nabla {\text{g + g}}\nabla {\text{f)}} \cdot {\text{dS}}.....{\text{(1)}}\)

Now use the identity –

\({\rm{curl(F + G) = curl F + curl G}}\)

Now, it can be written –

\({\rm{curl(f}}\nabla {\rm{g + g}}\nabla {\rm{f) = curl}}\left( {{\rm{f}}\nabla {\rm{g}}} \right){\rm{ + curl}}\left( {{\rm{g}}\nabla {\rm{f}}} \right)\)

Next, use the identity –

\({\rm{curl(fF) = f curl F + (}}\nabla {\rm{f) \times F}}\)

And it is obtained that –

\({\rm{curl(f}}\nabla {\rm{g) + curl(g}}\nabla {\rm{f) = f curl}}\nabla {\rm{g + }}\nabla {\rm{f \times }}\nabla {\rm{g + g curl }}\nabla {\rm{f + }}\nabla {\rm{g \times }}\nabla {\rm{f}}\)

Since the curl of a gradient vector field is \({\rm{0}}\) and \({\rm{a \times b = - b \times a}}\) for vectors\({\rm{a,b}}\), it is obtained –

\({\rm{curl(f}}\nabla {\rm{g) + curl(g}}\nabla {\rm{f) = 0}}\)

Then, equation\({\rm{(1)}}\)can be written as –

\(\int_{\text{C}} {{\text{(f}}\nabla {\text{g + g}}\nabla {\text{f)}}} \cdot {\text{dr = }}\iint_{\text{S}} {\text{0}} \cdot {\text{dS = 0}}\)

Therefore, it is proved that \(\int_{\rm{C}} {{\rm{(f}}\nabla {\rm{g + g}}\nabla {\rm{f)}}} \cdot {\rm{dr = 0}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free