Modify the equation (1)
\(\int_C {\bf{F}} \cdot d{\bf{r}} = \int_{{x_1}}^{{x_2}} {\int_{{y_1}}^{{y_2}} {\left( {\frac{{\partial Q}}{{\partial x}} - \frac{{\partial P}}{{\partial y}}} \right)} } dydx\)
Substitute 0 for \(\frac{{\partial P}}{{\partial y}},\frac{1}{{1 + {x^2}}}\)forfor\({x_1},1\)for\({x_2},x\)for\({y_1}\), and 1 for \({y_2}\),
\(\begin{aligned}\int_C {\bf{F}} \cdot d{\bf{r}} & = \int_0^1 {\int_x^1 {\left( {\frac{1}{{1 + {x^2}}} - 0} \right)} } dydx\\ & = \int_0^1 {\int_x^1 {\left( {\frac{1}{{1 + {x^2}}}} \right)} } dydx\\ & = \int_0^1 {\left( {\frac{1}{{1 + {x^2}}}} \right)} (y)_x^1dx\\ & = \int_0^1 {\left( {\frac{1}{{1 + {x^2}}}} \right)} (1 - x)dx\end{aligned}\)
Expand the equation
\(\begin{align} \int_{C}{\mathbf{F}}\cdot d\mathbf{r} & =\int_{0}^{1}{\left( \frac{1}{1+{{x}^{2}}}-\frac{x}{1+{{x}^{2}}} \right)}dx \\ & =\left[ {{\tan }^{-1}}x-\frac{1}{2}\ln \left( 1+{{x}^{2}} \right) \right]_{0}^{1}\left\{ \because \int{\frac{\frac{1}{1+{{t}^{2}}}dt={{\tan }^{-1}}t,}{\int{\frac{t}{1+{{t}^{2}}}}dt=\frac{1}{2}\ln \left( 1+{{t}^{2}} \right)}} \right\} \\ & =\left( {{\tan }^{-1}}(1)-\frac{1}{2}\ln \left( 1+{{1}^{2}} \right) \right)-\left( {{\tan }^{-1}}(0)-\frac{1}{2}\ln \left( 1+{{0}^{2}} \right) \right) \end{align}\)
Solve the equation further
\(\begin{array}{l}\int_C {\bf{F}} \cdot d{\bf{r}} = \frac{\pi }{4} - \frac{1}{2}\ln 2 - 0 + 0\\\int_C {\bf{F}} \cdot d{\bf{r}} = \frac{\pi }{4} - \frac{1}{2}\ln 2\end{array}\)
Thus, the line integral of vector field \({\bf{F}}(x,y) = \langle y\cos x - xy\sin x,xy + x\cos x\rangle \) using Green's Theorem is \(\frac{\pi }{4} - \frac{1}{2}\ln 2\).