Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that \({\rm{F}}\) is conservative and use this fact to evaluate \(\int_{\rm{C}} {\rm{F}} \cdot {\rm{dr}}\) along the given curve.

\(\begin{aligned}\rm F(x,y) &= \left( {{\rm{4}}{{\rm{x}}^{\rm{3}}}{{\rm{y}}^{\rm{2}}}{\rm{ - 2x}}{{\rm{y}}^{\rm{3}}}} \right){\rm{i + }}\left( {{\rm{2}}{{\rm{x}}^{\rm{4}}}{\rm{y - 3}}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{3}}}} \right){\rm{j}},\\C:\rm r(t) &= (t + sin\pi t)i + (2t + cos\pi t)j,\;\;\;0 \le t \le 1\end{aligned}\)

Short Answer

Expert verified

\({{\rm{P}}_{\rm{y}}}{\rm{ = }}{{\rm{Q}}_{\rm{x}}}\), The vector field \({\rm{F}}\) is conservative.

\(\int_{\rm{C}} {\rm{F}} \cdot {\rm{dr = 0}}\)

Step by step solution

01

To find the vector field is conservative.

Keep in mind that \({\rm{F = Pi + Qj}}\) is conservative when

\({{\rm{P}}_{\rm{y}}}{\rm{ = }}{{\rm{Q}}_{\rm{x}}}\)

Given:

\({\rm{F(x,y) = }}\left( {{\rm{4}}{{\rm{x}}^{\rm{3}}}{{\rm{y}}^{\rm{2}}}{\rm{ - 2x}}{{\rm{y}}^{\rm{3}}}} \right){\rm{i + }}\left( {{\rm{2}}{{\rm{x}}^{\rm{4}}}{\rm{y - 3}}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{3}}}} \right){\rm{j}}\)

To get,

\(\begin{aligned}\rm P &= 4{{\rm{x}}^{\rm{3}}}{{\rm{y}}^{\rm{2}}}{\rm{ - 2x}}{{\rm{y}}^{\rm{3}}}\\{{\rm{P}}_{\rm{y}}}\rm &= 8{{\rm{x}}^{\rm{3}}}{\rm{y - 6x}}{{\rm{y}}^{\rm{2}}}\\\rm Q &= 2{{\rm{x}}^{\rm{4}}}{\rm{y - 3}}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{3}}}\\{{\rm{Q}}_{\rm{x}}}\rm &= 8{{\rm{x}}^{\rm{3}}}{\rm{y - 6x}}{{\rm{y}}^{\rm{2}}}{\rm{ + 0}}\end{aligned}\)

\({{\rm{P}}_{\rm{y}}}{\rm{ = }}{{\rm{Q}}_{\rm{x}}}\), As a result, the vector field \({\rm{F}}\) is conservative.

02

To find\[\int_{\rm{C}} {\rm{F}}  \cdot {\rm{dr}}\).

\(\begin{aligned}\rm F(x,y) &= \nabla {\rm{f}}\\{{\rm{f}}_{\rm{x}}}{\rm{i + }}{{\rm{f}}_{\rm{y}}}\rm j &= \left( {{\rm{4}}{{\rm{x}}^{\rm{3}}}{{\rm{y}}^{\rm{2}}}{\rm{ - 2x}}{{\rm{y}}^{\rm{3}}}} \right){\rm{i + }}\left( {{\rm{2}}{{\rm{x}}^{\rm{4}}}{\rm{y - 3}}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{3}}}} \right){\rm{j}}\\{{\rm{f}}_{\rm{x}}}\rm &= 4{{\rm{x}}^{\rm{3}}}{{\rm{y}}^{\rm{2}}}{\rm{ - 2x}}{{\rm{y}}^{\rm{3}}}\\{{\rm{f}}_{\rm{y}}}\rm &= 2{{\rm{x}}^{\rm{4}}}{\rm{y - 3}}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{3}}}\end{aligned}\)

Integrate in terms of \({\rm{x}}\) while keeping \({\rm{y}}\)constant.

\({\rm{f(x,y) = }}\int {\rm{4}} {{\rm{x}}^{\rm{3}}}{{\rm{y}}^{\rm{2}}}{\rm{ - 2x}}{{\rm{y}}^{\rm{3}}}{\rm{dx}}\)

\({\rm{f(x,y) = }}{{\rm{x}}^{\rm{4}}}{{\rm{y}}^{\rm{2}}}{\rm{ - }}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{3}}}{\rm{ + p(y)}} \to {\rm{(1)}}\)

Note that \({{\rm{P}}_{\rm{y}}}\) is the Integration constant. To get \({\rm{y}}\), partial differentiation \({\rm{Eqn(1)}}\).

\({{\rm{f}}_{\rm{y}}}{\rm{ = 2}}{{\rm{x}}^{\rm{4}}}{\rm{y - 3}}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{p}}^{\rm{'}}}{\rm{(y)}}\)

Known that \({{\rm{f}}_{\rm{y}}}{\rm{ = 2}}{{\rm{x}}^{\rm{4}}}{\rm{y - 3}}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^3}\)

\({{\rm{p}}^{\rm{'}}}{\rm{(y) = 4}}{{\rm{y}}^{\rm{3}}}\)

Integrate both sides. To get

\({\rm{p(y) = }}{{\rm{y}}^{\rm{4}}}{\rm{ + K}}\)

Replace 'expression' with a substitute.\({\rm{p(y)}}\)in \({\rm{Eqn(1)}}\)

To get \({\rm{f(x,y) = }}{{\rm{x}}^{\rm{4}}}{{\rm{y}}^{\rm{2}}}{\rm{ - }}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{3}}}{\rm{ + }}{{\rm{y}}^{\rm{4}}}{\rm{ + K}}\)

Line Integrals are defined by the fundamental theorem of line integrals.

\(\int_{\rm{C}} {\rm{F}} \cdot d{\rm{r}} = \int_C \nabla f \cdot {\rm{dr = f}}\left( {{{\rm{x}}_{\rm{2}}}{\rm{,}}{{\rm{y}}_{\rm{2}}}} \right){\rm{ - f}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{y}}_{\rm{1}}}} \right)\)

Where \(C\) denotes a curve extending from \(\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{y}}_{\rm{1}}}} \right){\rm{to}}\left( {{{\rm{x}}_{\rm{2}}}{\rm{,}}{{\rm{y}}_{\rm{2}}}} \right)\) Given this,

\({\rm{r(t) = (t + sin\pi t)i + (2t + cos\pi t)j,}}\;\;\;0 \le t \le 1\)

Hence \(C\) denotes a curve extending from \(\left( {{\rm{0,1}}} \right){\rm{to}}\left( {{\rm{1,1}}} \right)\)

Therefore,

\(\begin{aligned}\int_{\rm{C}} {\rm{F}} \cdot \rm dr &= f(1,1) - f(0,1)\\\rm &= (1 - 1 + 1 + K) - (0 - 0 + 1 + K)\\\rm &= 0\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free