Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\({\rm{F(x,y,z) = sinyi + xcosyj - sinzk}}{\rm{.}}\)

Short Answer

Expert verified

\({\rm{F}}\) is a conservative vector field The potential function is \({\rm{f(x,y,z) = xsiny + cosz + K}}{\rm{.}}\)

Step by step solution

01

Step 1:\({\rm{F}}\) is conservative,

The vector field \({\rm{F}}\)\({{\rm{R}}^{\rm{3}}}\) is conservative if and only if the curl \({\rm{F = 0}}\)

By definition curl

\({\rm{F = }}\nabla {\rm{ \times F}}\)

\({\rm{F = Pi + Qj + Rk}}\)

Then \({\rm{F}}\) is conservative if and only if

\(\left( {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{\frac{\partial }{{\partial {\rm{x}}}}}&{\frac{\partial }{{\partial {\rm{y}}}}}&{\frac{\partial }{{\partial {\rm{z}}}}}\\{\rm{P}}&{\rm{Q}}&{\rm{R}}\end{array}} \right) = 0\)

Which is

\(\frac{{\partial {\rm{R}}}}{{\partial {\rm{y}}}}{\rm{ - }}\frac{{\partial {\rm{Q}}}}{{\partial {\rm{z}}}}\;\;\;{\rm{i - }}\frac{{\partial {\rm{P}}}}{{\partial {\rm{z}}}}{\rm{ - }}\frac{{\partial {\rm{R}}}}{{\partial {\rm{x}}}}\;\;\;{\rm{j + }}\frac{{\partial {\rm{Q}}}}{{\partial {\rm{x}}}}{\rm{ - }}\frac{{\partial {\rm{P}}}}{{\partial {\rm{y}}}}\;\;\;{\rm{k = 0}}\)

This implies that \({\rm{F}}\) is conservative if and only if the following conditions are met

\(\frac{{\partial {\rm{R}}}}{{\partial {\rm{y}}}}{\rm{ = }}\frac{{\partial {\rm{Q}}}}{{\partial {\rm{z}}}}\)and \(\frac{{\partial {\rm{P}}}}{{\partial {\rm{z}}}}{\rm{ = }}\frac{{\partial {\rm{R}}}}{{\partial {\rm{x}}}}\;\;\;\)and \(\frac{{\partial {\rm{Q}}}}{{\partial {\rm{x}}}}{\rm{ = }}\frac{{\partial {\rm{P}}}}{{\partial {\rm{y}}}}\)

\({R_y} = {Q_z}\) and \({P_z} = {R_x}\) and \({Q_x} = {P_y}\)

02

The vector field is conservative,

Given that

\({\rm{F(x,y,z) = sinyi + xcosyj - sinzk}}\)

Then have

\({\rm{P = siny}} \Rightarrow {{\rm{P}}_{\rm{z}}}{\rm{ = 0 and }}{{\rm{P}}_{\rm{y}}}{\rm{ = cosy}}\)

\({\rm{Q = xcosy}} \Rightarrow {{\rm{Q}}_{\rm{z}}}{\rm{ = 0 and }}{{\rm{Q}}_{\rm{x}}}{\rm{ = cosy}}\)

\({\rm{R = - sinz}} \Rightarrow {{\rm{R}}_{\rm{x}}}{\rm{ = 0 and }}{{\rm{R}}_{\rm{y}}}{\rm{ = 0}}\)

Note that

Have \({{\rm{R}}_{\rm{y}}}{\rm{ = }}{{\rm{Q}}_{\rm{z}}}{\rm{ = 0 }}\) and \({{\rm{P}}_{\rm{z}}}{\rm{ = }}{{\rm{R}}_{\rm{x}}}{\rm{ = 0}}\)\({{\rm{Q}}_{\rm{x}}}{\rm{ = }}{{\rm{P}}_{\rm{y}}}{\rm{ = cosy}}\)

Therefore, the given vector field is conservative.

03

Equating,

\({\rm{F(x,y,z) = }}\nabla {\rm{f}}\)

\({{\rm{f}}_{\rm{x}}}{\rm{i + }}{{\rm{f}}_{\rm{y}}}{\rm{j + }}{{\rm{f}}_{\rm{z}}}{\rm{k = sinyi + xcosyj - sinzk}}\)

Therefore,

\({{\rm{f}}_{\rm{x}}}{\rm{ = siny}}\)

And

\({{\rm{f}}_{\rm{y}}}{\rm{ = xcosy}}\)

And

\({{\rm{f}}_{\rm{z}}}{\rm{ = - sinz}}\)

04

Integrate concerning\({\rm{x,}}\)

\({{\rm{f}}_{\rm{x}}}{\rm{ = siny}}\)

It integratesconcerns\({\rm{x}}\) while treating \({\rm{y}}\) and \({\rm{z}}\) a constant

\({\rm{f(x,y) = xsiny + p(y,z)}} \to {\rm{(1)}}\)

Note that \({\rm{p(y, z)}}\)this is the Integration constant.

05

Differentiating this equation concerning \({\rm{z,}}\)          

Partial differentiate Equation \({\rm{(1)}}\)concerning\(y\) to get

\({{\rm{f}}_{\rm{y}}}{\rm{ = xcosy + }}{{\rm{p}}_{\rm{y}}}{\rm{(y,z)}}\)

But we know that \({{\rm{f}}_{\rm{y}}}{\rm{ = xcosy}}\)

Therefore,

\({{\rm{p}}_{\rm{y}}}{\rm{ = 0}}\)

Integrate concerning\({\rm{y}}\) assuming \({\rm{z}}\) is constant, to get

\({\rm{p(y,z) = g(z)}}\)

Differentiating this equation concerning to \({\rm{z,}}\)gives

\({{\rm{p}}_{\rm{z}}}{\rm{ = }}{{\rm{g}}^{'}}{\rm{(z)}}\)

06

Partial differentiate Equation\({\rm{(1)}}\) concerning \({\rm{z,}}\)

Partial differentiate Equation \({\rm{(1)}}\) concerning \({\rm{z,}}\) getting

\({{\rm{f}}_{\rm{z}}}{\rm{ = }}{{\rm{p}}_{\rm{z}}}\)

But we know that \({{\rm{f}}_{\rm{z}}}{\rm{ = - sinz}}\)

Therefore,

\({{\rm{p}}_{\rm{z}}}{\rm{(y,z) = - sinz}}\)

But know that \({{\rm{p}}_{\rm{z}}}{\rm{ = }}{{\rm{g}}^{'}}{\rm{(z)}}\)

Therefore, have

\({{\rm{g}}^{'}}{\rm{(z) = - sinz}}\)

Integrate, to get \({\rm{g(z) = cosz + K}}\)

Therefore, \({\rm{p(y,z) = cosz + K}}\)

Substitute \({\rm{p(y,z)}}\)in Equation \({\rm{(1)}}\),

\({\rm{f(x,y,z) = xsiny + cosz + K}}\)

\({\rm{F}}\) is a conservative vector field The potential function is \({\rm{f(x,y,z) = xsiny + cosz + K}}{\rm{.}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free