Chapter 13: Q12E (page 771)
Evaluate the line integral, where\({\rm{C}}\)is the given curve.
Short Answer
The final component \(\sqrt {\rm{5}} \frac{{{{{\rm{(2\pi )}}}^{\rm{3}}}}}{{\rm{3}}}{\rm{ + 2\pi }}\)
Chapter 13: Q12E (page 771)
Evaluate the line integral, where\({\rm{C}}\)is the given curve.
The final component \(\sqrt {\rm{5}} \frac{{{{{\rm{(2\pi )}}}^{\rm{3}}}}}{{\rm{3}}}{\rm{ + 2\pi }}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe curve with the vector equation \({\rm{r(t) = }}{{\rm{t}}^{\rm{3}}}{\rm{i + 2}}{{\rm{t}}^{\rm{3}}}{\rm{j + 3}}{{\rm{t}}^{\rm{3}}}{\rm{k}}\) is a line.
To determine the flux of the given vector field \(F\) across \(S\).
Find the value of \(\iint_S ydS\)\(z = \frac{2}{3}\left( {{x^{\frac{3}{2}}} + {y^{\frac{3}{2}}}} \right),0 \le x \le 1\)and \(0 \le y \le 1.\)
Find the value of\(\iint_S {{x^2}}yzdS\)
Show that the line integral is independent of the path and evaluate the integral.
\(\int_C {\sin } ydx + (x\cos y - \sin y)dy\),
\(C\)is any path from \((2,0)\) to \((1,\pi )\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.