Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Verify that Stokes’ Theorem is true for the given vector field \({\rm{F}}\)and surface\({\rm{S}}\).

\({\rm{F(x,y,z) = - yi + xj - 2k,}}\)

\({\rm{S}}\)is the cone \({{\rm{z}}^{\rm{2}}}{\rm{ = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{,0}} \le {\rm{z}} \le {\rm{4,}}\)that lies inside the cylinder\({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 4}}\) , oriented downward

Short Answer

Expert verified

The Stokes' Theorem has been proven correct:

\(\int {\int_{\rm{S}} {{\rm{curl}}} } {\rm{F \times dS = }}\int_{\rm{C}} {\rm{F}} {\rm{ \times dr = - 32\pi }}\)

Step by step solution

01

Concept Introduction

The surface integral of a function's curl over any surface limited by a closed path is equivalent to the line integral of a given vector function around that path, according to a theorem.

02

Stokes’ Theorem is true for the given vector field \({\rm{F}}\)and surface\({\rm{S}}\)

The Stokes’ Theorem is true for the given vector field \({\rm{F}}\)and surface\({\rm{S}}\)

Compute \(\int_{\rm{C}} {\rm{F}} {\rm{ \times dr}}\)

\({\rm{S}}\)has a circle with parametric representation as its boundary.

\({\rm{r = }} < {\rm{4cost,4sint,4 }} > {\rm{,0}} < {\rm{t}} \le {\rm{2\pi }}\)r=⟨4cost,4sint,4⟩,0<t≤2π

\(d{\bf{r}} = < {\rm{ - 4sint,4cost,0 > dt}}\)

Given that

\({\rm{F = - yi + xj - 2k}}\)

Substitute the values of \({\rm{x,y,}}\)To get

\({\rm{F}}\left( {{\rm{r}}\left( {\rm{t}} \right)} \right) = < {\rm{ - 4sint,4cost, - 2}} > \)

We'll integrate from \({\rm{2\pi }}\) to 0 because the right hand rule indicates that the \({\rm{C}}\) should be rotated clockwise.

\(\begin{array}{c}\int_{\rm{C}} {\rm{F}} {\rm{ \times dr}} = \int_{{\rm{2\pi }}}^{\rm{0}} {{\rm{ < - 4sint,4cost, - 2}}} {\rm{ > \times }} < {\rm{ - 4sint,4cost,0}} > {\rm{dt}}\\ = \int_{2\pi }^0 1 6{\sin ^2}t + 16{\cos ^2}tdt\\ = 16\int_{2\pi }^0 {dt = - 32\pi } \end{array}\)

Compute

If\({\rm{F = Pi + Qj + Rk,}}\)

\({\rm{curlF = }}\left( {{{\rm{R}}_{\rm{y}}}{\rm{ - }}{{\rm{Q}}_{\rm{z}}}} \right){\rm{i + }}\left( {{{\rm{P}}_{\rm{z}}}{\rm{ - }}{{\rm{R}}_{\rm{x}}}} \right){\rm{j + }}\left( {{{\rm{Q}}_{\rm{x}}}{\rm{ - }}{{\rm{P}}_{\rm{y}}}} \right){\rm{k}}\)

Where \({{\rm{Q}}_{\rm{y}}}\)is partial derivative of \({\rm{Q}}\)with respect to \(y\)

Given that

\({\rm{F = - yi + xj - 2k}}\)

Therefore

\({\rm{curlF = (0 - 0)i + (0 - 0)j + (1 - ( - 1))k}}\)

\({\mathop{\rm curl}\nolimits} {\bf{F}} = 2{\bf{k}}\)

03

Explanation of the Solution

We will use,

Where \({\rm{G = Pi + Qj + Rk}}\)

When the surface is oriented upwards, this formula is employed

however, when the surface is oriented downwards, this formula is used.

As a result, the result will be the inverse of what we discover using this technique.

\({\rm{z = g(x,y) = }}\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} \;\;\;\)We're talking about the top of the cone

\(\begin{array}{c}\frac{{\partial g}}{{\partial x}}{\rm{ = }}\frac{{\rm{x}}}{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} }}\frac{{\partial g}}{{\partial y}}\\{\rm{ = }}\frac{{\rm{y}}}{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} }}\end{array}\)

\({\rm{D}}\)is the \({\rm{xy}}\) plane projection of the surface,

\({\rm{D}}\)Denotes the area within the circle \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = }}{{\rm{4}}^{\rm{2}}}{\rm{,z = 0}}\)

Also \(\smallint \smallint \_{\rm{DdA}}\) is the area of the circle, which is \({\rm{16\pi }}\)

Therefore,

\(\begin{array}{c}{\rm{2}}\int {\int_{\rm{D}} {\rm{d}} } {\rm{A = 2 \times 16\pi }}\\{\rm{ = 32\pi }}\end{array}\)

However, because we used a formula for an upward-oriented surface, the result is \({\rm{ - 32\pi }}\)

Since then, Stoke's theorem has been confirmed\(\int {\int_{\rm{S}} {{\rm{curl}}} } {\rm{F \times dS = }}\int_{\rm{C}} {\rm{F}} {\rm{ \times dr = - 32\pi }}\)

The Stokes' Theorem has been proven correct

\(\int {\int_{\rm{S}} {{\rm{curl}}} } {\rm{F \times dS = }}\int_{\rm{C}} {\rm{F}} {\rm{ \times dr = - 32\pi }}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free