Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson's Rule to approximate the given integral with the specified value of\(n\). (Round your answers to six decimal places.)

\(\int_0^2 {\frac{{{e^x}}}{{1 + {x^2}}}} dx,\;\;\;n = 10\)

Short Answer

Expert verified
  1. Using Trapezoidal rule \(\int_0^2 {\frac{{{e^x}}}{{1 + {x^2}}}} dx,\;\;\;n = 10\) is \(2.660833\).
  2. Using Midpoint rule \(\int_0^2 {\frac{{{e^x}}}{{1 + {x^2}}}} dx,\;\;\;n = 10\) is \(2.664377\).
  3. Using Simpson’s rule \(\int_0^2 {\frac{{{e^x}}}{{1 + {x^2}}}} dx,\;\;\;n = 10\) is \(2.663244\).

Step by step solution

01

Definition:

Trapezoidal Rule is a rule that evaluates the area under the curves by dividing the total area into smaller trapezoids rather than using rectangles.

Simpson's Rule approximates the integral of a function between two limits\(a\,\& \,b\).It's based on knowing the area under a parabola, or a plane curve.

The midpoint rule approximates the definite integral using rectangular regions.

02

Computing interval width:(a)

For Trapezoidal rule:

Given integral is \(\int_0^2 {\frac{{{e^x}}}{{1 + {x^2}}}} dx,\;\;\;n = 10\).

Width of interval :

\(\begin{aligned}{c}\Delta x = \frac{{b - a}}{n}\\ = \frac{{2 - 0}}{{10}}\\ = 0.2\end{aligned}\)

03

Find table of values:

For the trapezoid rule, calculate values at the interval ends or boundaries.

\(x\)

\(f(x)\)

0

1

0.2

1.174426

0.4

1.286056

0.6

1.339793

0.8

1.357037

1

1.359141

1.2

1.360704

1.4

1.370000

1.6

1.391301

1.8

1.426804

04

Compute using Trapezoidal rule:

Trapezoid rule has \(n + 1 = 11\) terms.

\(\begin{aligned}{c}{T_{10}} = \int_0^2 {\frac{{{e^x}}}{{1 + {x^2}}}} dx\\ \approx \frac{{\Delta x}}{2}\left( {f\left( {{x_0}} \right) + 2f\left( {{x_1}} \right) + 2f\left( {{x_2}} \right) + 2f\left( {{x_3}} \right) + 2f\left( {{x_4}} \right) + 2f\left( {{x_5}} \right) + 2f\left( {{x_6}} \right)} \right.\left. { + 2f\left( {{x_7}} \right) + 2f\left( {{x_8}} \right) + 2f\left( {{x_9}} \right) + f\left( {{x_{10}}} \right)} \right)\\ \approx \frac{{0.2}}{2}(1 + 2(1.174426) + 2(1.286056) + 2(1.339793) + 2(1.357037) + 2(1.359141)\\ + 2(1.360704) + 2(1.37) + 2(1.391301) + 2(1.426804) + 1.477811)\\ \approx 2.660833\end{aligned}\)

05

Compute width of interval:(b)

For Midpoint rule:

Given integral is \(\int_0^2 {\frac{{{e^x}}}{{1 + {x^2}}}} dx,\;\;\;n = 10\).

Width of interval :

\(\begin{aligned}{c}\Delta x = \frac{{b - a}}{n}\\ = \frac{{2 - 0}}{{10}}\\ = 0.2\end{aligned}\)

06

Find table of values:

For the midpoint rule, calculate values for the function at the center of every interval. So we start at \(x = 0.1\) and increment by \(\Delta x\).

\(x\)

\(f(x)\)

\(0.1\)

\(1.094229\)

\(0.3\)

\(1.238403\)

\(0.5\)

\(1.318977\)

\(0.7\)

\(1.351512\)

\(0.9\)

\(1.358897\)

\(1.1\)

\(1.359351\)

\(1.3\)

\(1.364051\)

\(1.5\)

\(1.378981\)

\(1.7\)

\(1.407184\)

\(1.9\)

\(1.450302\)

07

Compute using Midpoint rule:

\(\begin{aligned}{c}{M_{10}} = \int_0^2 {\frac{{{e^x}}}{{1 + {x^2}}}} dx\\ \approx \Delta x\left( {f\left( {{x_0}} \right) + f\left( {{x_1}} \right) + f\left( {{x_2}} \right) + f\left( {{x_3}} \right) + f\left( {{x_4}} \right) + f\left( {{x_5}} \right) + f\left( {{x_6}} \right) + f\left( {{x_7}} \right)} \right)\\ \approx 0.2(1.094229 + 1.238403 + 1.318977 + 1.351512 + 1.358897 + 1.359351\\ + 1.364051 + 1.378981 + 1.407184 + 1.450302)\\ \approx 2.664377\end{aligned}\)

08

Find width of interval:(c)

Given integral is \(\int_0^2 {\frac{{{e^x}}}{{1 + {x^2}}}} dx,\;\;\;n = 10\).

Width of interval :

\(\begin{aligned}{c}\Delta x = \frac{{b - a}}{n}\\ = \frac{{2 - 0}}{{10}}\\ = 0.2\end{aligned}\)

09

Find table of values:

For Simpson’s rule calculate the value at interval ends or boundaries.

\(x\)

\(f(x)\)

0

1

\(0.2\)

\(1.174426\)

\(0.4\)

\(1.286056\)

\(0.6\)

\(1.339793\)

\(0.8\)

\(1.357037\)

1

\(1.359141\)

\(1.2\)

\(1.360704\)

\(1.4\)

\(1.370000\)

\(1.6\)

\(1.391301\)

\(1.8\)

\(1.426804\)

2

\(1.177811\)

10

Compute using Simpson’s rule:

Simpson's rule has \(n + 1 = 11\) terms.

\(\begin{aligned}{c}{S_{10}} = \int_0^2 {\frac{{{e^x}}}{{1 + {x^2}}}} dx\\ \approx \frac{{\Delta x}}{3}\left( {f\left( {{x_0}} \right) + 4f\left( {{x_1}} \right) + 2f\left( {{x_2}} \right) + 4f\left( {{x_3}} \right) + 2f\left( {{x_4}} \right)} \right.\left. { + 4f\left( {{x_5}} \right) + 2f\left( {{x_6}} \right) + 4f\left( {{x_7}} \right) + 2f\left( {{x_8}} \right) + 4f\left( {{x_9}} \right) + f\left( {{x_{10}}} \right)} \right)\\ \approx \frac{{0.2}}{3}(1 + 4(1.174426) + 2(1.286056) + 4(1.339793) + 2(1.357037)\\ + 4(1.359141) + 2(1.360704) + 4(1.37) + 2(1.391301) + 4(1.426804) + 1.477811)\\ \approx 2.663244\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free