Chapter 6: Q9E (page 334)
Evaluate the integral:\(\int {\frac{{5x + 1}}{{(2x + 1)\left( {x - 1} \right)}}} dx\).
Short Answer
The value of the integral is \(log\left( {\sqrt {2x + 1} {{(x - 1)}^2}} \right) + c\)
Chapter 6: Q9E (page 334)
Evaluate the integral:\(\int {\frac{{5x + 1}}{{(2x + 1)\left( {x - 1} \right)}}} dx\).
The value of the integral is \(log\left( {\sqrt {2x + 1} {{(x - 1)}^2}} \right) + c\)
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Use the table of integrals to evaluate\(F(x) = \int f (x)dx\), where
\(f(x) = \frac{1}{{x\sqrt {1 - {x^2}} }}\)What is the domain of \(f\)and\(F\)?
(b) Use a CAS to evaluate\(F(x)\). What is the domain of the function\(F\) that the CAS produces? Is there a discrepancy between this domain and the domain of the function\(F\)that you found in part (a)?
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int {\frac{{dt}}{{2{t^2} + 3t + 1}}} \)
Evaluate the Integral: \(\int\limits_0^\pi {{{\cos }^6}\theta } d\theta \)
evaluate: \(\int {ln({x^2} - x + 2)} dx\)
Evaluate the Integral \(\begin{aligned}{l}\int {\sqrt {{e^{2x}} - 1} dx} \\\end{aligned}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.