Chapter 6: Q8E (page 362)
State the Comparison Theorem for improper integrals.
Short Answer
for then \(f(x) \ge g(x) \ge 0\)
If \(f(x)\)is convergent then \(g(x)\) is also Convergent and if \(g(x)\) is divergent then \(f(x)\)is also divergent
Chapter 6: Q8E (page 362)
State the Comparison Theorem for improper integrals.
for then \(f(x) \ge g(x) \ge 0\)
If \(f(x)\)is convergent then \(g(x)\) is also Convergent and if \(g(x)\) is divergent then \(f(x)\)is also divergent
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the Integral
\(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {co{t^5}\phi cose{c^3}\phi } \,d\phi \)
Evaluate the integral\(\int {{{\tan }^2}} x\sec xdx\)
if \(a \ne 0\) and n is a positive integer, find the partial fraction decomposition of \(f(x) = \frac{1}{{{x^n}(x - a)}}\)
Evaluate the integral:\(\int {\frac{{5x + 1}}{{(2x + 1)\left( {x - 1} \right)}}} dx\).
Evaluate the integral\(\int {\frac{{{\rm{dx}}}}{{{{\rm{x}}^{\rm{2}}}\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.