Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral\(\int {\frac{{{\rm{dx}}}}{{{{\rm{x}}^{\rm{2}}}\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}} \)

Short Answer

Expert verified

Substitute trigonometrically\(\frac{{{\rm{dx}}}}{{{{\rm{x}}^{\rm{2}}}\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}{\rm{ = - }}\frac{{\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}{{\rm{x}}}{\rm{ + C}}\)

Step by step solution

01

Step1: We start with a trigonometric substitution\({\rm{x = tanu}}\).

\(\begin{aligned}{c}\frac{{{\rm{dx}}}}{{{{\rm{x}}^{\rm{2}}}\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}{\rm{x = tanu}}\\{\rm{dx = se}}{{\rm{c}}^{\rm{2}}}\\{\rm{ = }}\frac{{{\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{udu}}}}{{{\rm{ta}}{{\rm{n}}^{\rm{2}}}{\rm{u}}\sqrt {{\rm{1 + ta}}{{\rm{n}}^{\rm{2}}}{\rm{u}}} }}\end{aligned}\)

We currently use the term identity.

\({\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{u = 1 + ta}}{{\rm{n}}^{\rm{2}}}{\rm{u}}\)

\(\begin{aligned}{c}\frac{{{\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{udu}}}}{{{\rm{ta}}{{\rm{n}}^{\rm{2}}}{\rm{u}}\sqrt {{\rm{1 + ta}}{{\rm{n}}^{\rm{2}}}{\rm{u}}} }}{\rm{ = }}\frac{{{\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{udu}}}}{{{\rm{ta}}{{\rm{n}}^{\rm{2}}}{\rm{usecu}}}}\\{\rm{ = }}\frac{{{\rm{secudu}}}}{{{\rm{ta}}{{\rm{n}}^{\rm{2}}}{\rm{u}}}}\\{\rm{ = }}\frac{{\frac{{\rm{1}}}{{{\rm{co}}{{\rm{s}}^{\rm{2}}}}}}}{{\frac{{{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{u}}}}{{{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{u}}}}}}{\rm{du}}\\{\rm{ = }}\frac{{{\rm{cosu}}}}{{{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{u}}}}{\rm{du}}\end{aligned}\)

02

Step2: We utilize substitution to calculate the final integral\({\rm{t = sinu}}\).

\(\begin{aligned}{c}\frac{{{\rm{cosu}}}}{{{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{u}}}}{\rm{du = t}}\\{\rm{ = sinu}}\end{aligned}\)

\({\rm{dt = cosudu}}\)

\(\begin{aligned}{c}{\rm{ = }}\frac{{{\rm{dt}}}}{{{{\rm{t}}^{\rm{2}}}}}\\{\rm{ = - }}\frac{{\rm{1}}}{{\rm{t}}}{\rm{ + C}}\\{\rm{ = - }}\frac{{\rm{1}}}{{{\rm{sinu}}}}{\rm{ + C}}\end{aligned}\)

03

Step3: We must express our first substitution in order to return it \({\rm{sinu}}\)and\({\rm{x}}\).

\(\begin{aligned}{c}{\rm{sinu = }}\frac{{{\rm{tanu}}}}{{\sqrt {{\rm{1 + ta}}{{\rm{n}}^{\rm{2}}}{\rm{u}}} }}\\{\rm{sinu = }}\frac{{\rm{x}}}{{\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}\\\frac{{{\rm{dx}}}}{{{{\rm{x}}^{\rm{2}}}\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}{\rm{ = - }}\frac{{\rm{1}}}{{{\rm{sinu}}}}{\rm{ + C}}\\{\rm{ = - }}\frac{{\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}{{\rm{x}}}{\rm{ + C}}{\rm{.}}\end{aligned}\)

Conclusion finding a final solution\(\frac{{{\rm{dx}}}}{{{{\rm{x}}^{\rm{2}}}\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}{\rm{ = - }}\frac{{\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}{{\rm{x}}}{\rm{ + C}}{\rm{.}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free