Chapter 6: Q8E (page 340)
Evaluate the integral \(\int {\frac{{dx}}{{2{x^3} - 3{x^2}}}} \)
Short Answer
\(\)\(\frac{1}{{3x}} - \frac{{2\ln (x)}}{9} + \frac{{2\ln (2x - 3)}}{9}\)is the value of given integral.
Chapter 6: Q8E (page 340)
Evaluate the integral \(\int {\frac{{dx}}{{2{x^3} - 3{x^2}}}} \)
\(\)\(\frac{1}{{3x}} - \frac{{2\ln (x)}}{9} + \frac{{2\ln (2x - 3)}}{9}\)is the value of given integral.
All the tools & learning materials you need for study success - in one app.
Get started for free\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_0^{\pi /2} {\sin } \theta {e^{\cos \theta }}d\theta \)
Evaluate the Integral
\(\int {cose{c^4}x\,co{t^6}x\,dx} \)
Evaluate the integral: \(\int {\frac{{axdx}}{{{x^2} - bx}}} \)
if f is a quadratic function such that \(f(0) = 1\) and \(\int {\frac{{f(x)}}{{{x^2}{{(x + 1)}^3}}}dx} \) is a rational function, find the value of \(f'(0)\)
Evaluate the integral\(\int {{{{\mathop{\rm Sin}\nolimits} }^6}2x.dx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.