Chapter 6: Q7E (page 363)
Evaluate the integral\(\int {\frac{{{\rm{sin(lnt)}}}}{{\rm{t}}}} {\rm{dt}}\)
Short Answer
Evaluation’s successor is \(\frac{{{\rm{sin(lnt)}}}}{{\rm{t}}}{\rm{dt = - cos(lnt) + C}}\)
Chapter 6: Q7E (page 363)
Evaluate the integral\(\int {\frac{{{\rm{sin(lnt)}}}}{{\rm{t}}}} {\rm{dt}}\)
Evaluation’s successor is \(\frac{{{\rm{sin(lnt)}}}}{{\rm{t}}}{\rm{dt = - cos(lnt) + C}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite out the form of the partial fraction decomposition of the function (as in Example 6). Do not determine the numerical values of the coefficients.
(a)\(\frac{{{x^4} + 1}}{{{x^3} + 4{x^3}}}\)
Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.
\(\int {\frac{1}{{\sqrt {1 + \sqrt(3){x}} }}} dx\)
\(\int {{{\cos }^2}} x{\tan ^3}xdx\), Evaluate this integral
Evaluate the integral\(\)\(\int {{{{\mathop{\rm Sin}\nolimits} }^2}x*{\mathop{\rm Cos}\nolimits} x*\ln ({\mathop{\rm Sin}\nolimits} x)dx} \)
Evaluate the Integral \(\begin{aligned}{l}\int {\sqrt {{e^{2x}} - 1} dx} \\\end{aligned}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.