Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral :

\(\int {\frac{{{x^4}}}{{x - 1}}dx} \)

Short Answer

Expert verified

First, divide \({x^4}\) by \(x - 1\), and then proceed further.

Step by step solution

01

Step 1:Given Data

\(\int {\frac{{{x^4}}}{{x - 1}}dx} = \int {{x^3} + {x^2} + x + 1 + \frac{1}{{x - 1}}dx} \)

02

Splitting the single integral into multiple integrals.

\( = \int {{x^3} dx + \int {{x^2}} dx + \int x dx + \int 1 dx + \int {\frac{1}{{x - 1}}} dx} \)

03

Solving each integral.

\(\begin{array}{l} = \frac{{{x^4}}}{4} + \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + x + \int {\frac{1}{{x - 1}}dx} \\\left( {Formula\,used:\int {{x^n}dx = \frac{{{x^{n + 1}}}}{{n + 1}}} } \right)\end{array}\)

04

Calculation of \(\int {\frac{1}{{x - 1}}dx} \).

Let\(x - 1\)be\(x\)

\(x - 1 = t\)

\(t = x - 1\)

\(\frac{{dt}}{{dx}} = 1 \Rightarrow dt = dx\)

Therefore, by substitution,

\(\begin{array}{l}\int {\frac{1}{{x - 1}}dx} = \int {\frac{1}{t}dt} \\ = log\left| t \right|\\ = log\left| {x - 1} \right|\end{array}\)

\(\int {\frac{{{x^4}}}{{x - 1}}} = \frac{{{x^4}}}{4} + \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + x + log\left| {x - 1} \right| + c\)

Hence, the value of the integral \(\int {\frac{{{x^4}}}{{x - 1}}} dx\) is \(\frac{{{x^4}}}{4} + \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + x + log\left| {x - 1} \right| + c\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free