Chapter 6: Q7E (page 334)
Evaluate the integral :
\(\int {\frac{{{x^4}}}{{x - 1}}dx} \)
Short Answer
First, divide \({x^4}\) by \(x - 1\), and then proceed further.
Chapter 6: Q7E (page 334)
Evaluate the integral :
\(\int {\frac{{{x^4}}}{{x - 1}}dx} \)
First, divide \({x^4}\) by \(x - 1\), and then proceed further.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral: \(\int {\frac{{axdx}}{{{x^2} - bx}}} \)
Try to evaluate\(\int {(1 + \ln x)} \sqrt {1 + {{(x\ln x)}^2}} dx\)with a computer algebra system. If it doesn't return an answer, make a substitution that changes the integral into one that the CAS can evaluate
Evaluate the integral:\(\int {\frac{{{x^2} + 2x - 1}}{{{x^3} - x}}dx} \)
Evaluate the integral\(\int {x*{\mathop{\rm Sin}\nolimits} ({x^2})*{\mathop{\rm Cos}\nolimits} (3{x^2}).dx} \)
Evaluate the integral \(\int\limits_0^{\frac{\pi }{2}} {{{\sin }^7}\theta {{\cos }^5}\theta d\theta } \).
What do you think about this solution?
We value your feedback to improve our textbook solutions.