Using By parts method to solve this question that isILATE
\(\int\limits_{.0}^\pi {{x^3}*{\mathop{\rm Sin}\nolimits} x.dx = {x^3}\int {{\mathop{\rm Sin}\nolimits} x.dx - \int {(\frac{d}{{dx}}} } } {x^3}\int {{\mathop{\rm Sin}\nolimits} x).dx} \)
= (-)\({x^3}{\mathop{\rm Cos}\nolimits} x + 3\int {{x^2}{\mathop{\rm Cos}\nolimits} x.dx} \)
=(-)\({x^3}{\mathop{\rm Cos}\nolimits} x + 3({x^2}{\mathop{\rm Sin}\nolimits} x - 2\int {x.{\mathop{\rm Sin}\nolimits} x.dx)} \)
=(-)\({x^3}{\mathop{\rm Cos}\nolimits} x + 3{x^2}{\mathop{\rm Sin}\nolimits} x - 6(x{\mathop{\rm Cos}\nolimits} x + \int {{\mathop{\rm Cos}\nolimits} x.dx)} \)\
=(-) \({x^3}{\mathop{\rm Cos}\nolimits} x + 3{x^2}{\mathop{\rm Sin}\nolimits} x - 6x{\mathop{\rm Cos}\nolimits} x + 6{\mathop{\rm Sin}\nolimits} x + c\)