Chapter 6: Q6E (page 326)
Integration \(\int\limits_0^{2\pi } {si{n^2}\left( {\frac{\theta }{3}} \right)} d\theta \).
Short Answer
\(\pi + \frac{{3\sqrt 3 }}{8}\) is the final answer to the question.
Chapter 6: Q6E (page 326)
Integration \(\int\limits_0^{2\pi } {si{n^2}\left( {\frac{\theta }{3}} \right)} d\theta \).
\(\pi + \frac{{3\sqrt 3 }}{8}\) is the final answer to the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite out the form of partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.
(a) \(\frac{{{x^6}}}{{{x^2} - 4}}\)
(b) \(\frac{{{x^4}}}{{\left( {{x^2} - x + 1} \right){{\left( {{x^2} + 2} \right)}^2}}}\)
Evaluate the integral \(\int {{{\sin }^3}x{{\cos }^3}xdx} \)
Evaluate the integral\(\int {{{\tan }^4}} x{\sec ^6}xdx\)
Evaluate the Integral \(\int\limits_0^1 {{x^4}{e^{ - 4}}dx} \)
Evaluate the integral \(\int {{{\sin }^3}\theta {{\cos }^4}} \theta d\theta \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.