Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral\(\int_{\rm{1}}^{\rm{2}} {\frac{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ - 1}}} }}{{\rm{x}}}} {\rm{dx}}\)

Short Answer

Expert verified

Considering the integral \(\frac{{{\rm{32}}}}{{\rm{3}}}{\rm{ln(2) - }}\frac{{\rm{7}}}{{\rm{4}}}\)

Step by step solution

01

Both \({{\rm{x}}^{\rm{5}}}\)or\({\rm{In x}}\).

Both \({{\rm{x}}^{\rm{5}}}\) or \({\rm{In x}}\)would become simpler after differentiating for integration by parts, but integral would be a little more complicated (requiring integration by parts simply for itself), therefore we will chose integral\({\rm{u = Inx}}\).

\(\begin{aligned}{c}{\rm{u = lnx}}\;\\\;\;\;{\rm{du = }}\frac{{\rm{1}}}{{\rm{x}}}{\rm{dx}}\\{\rm{dv = }}{{\rm{x}}^{\rm{5}}}{\rm{dx}}\\\;{\rm{v = }}\frac{{\rm{1}}}{{\rm{6}}}{{\rm{x}}^{\rm{6}}}\;\;\;\;\;\end{aligned}\)

\(\begin{aligned}{c}_{\rm{1}}^{\rm{2}}{{\rm{x}}^{\rm{5}}}{\rm{lnxdx = uv - vdu}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{6}}}{{\rm{x}}^{\rm{6}}}{\rm{lnx}}\;\;\;{\rm{ - }}\;\;\;\frac{{\rm{2}}}{{\rm{6}}}{{\rm{x}}^{\rm{6}}}{\rm{ \times }}\frac{{\rm{1}}}{{\rm{x}}}{\rm{dx}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{(64)ln2 - 0 - }}\frac{{\rm{1}}}{{\rm{6}}}_{\rm{1}}^{\rm{2}}{{\rm{x}}^{\rm{5}}}{\rm{dx}}\end{aligned}\)

02

Find\({\rm{u = Inx}}\).

\(\begin{aligned}{c}{\rm{ = }}\frac{{{\rm{32}}}}{{\rm{3}}}{\rm{ln(2) - }}\frac{{\rm{1}}}{{\rm{6}}}\frac{{\rm{1}}}{{\rm{6}}}{{\rm{x}}^{\rm{6}}}^{\rm{2}}\\{\rm{ = }}\frac{{{\rm{32}}}}{{\rm{3}}}{\rm{ln(2) - }}\frac{{\rm{1}}}{{\rm{6}}}\frac{{\rm{1}}}{{\rm{6}}}{\rm{(64) - }}\frac{{\rm{1}}}{{\rm{6}}}\\{\rm{ = }}\frac{{{\rm{32}}}}{{\rm{3}}}{\rm{ln(2) - }}\frac{{\rm{1}}}{{\rm{6}}}\frac{{{\rm{63}}}}{{\rm{6}}}\\{\rm{ = }}\frac{{{\rm{32}}}}{{\rm{3}}}{\rm{ln(2) - }}\frac{{\rm{1}}}{{\rm{6}}}\frac{{{\rm{21}}}}{{\rm{2}}}\\{\rm{ = }}\frac{{{\rm{32}}}}{{\rm{3}}}{\rm{ln(2) - }}\frac{{\rm{1}}}{{\rm{2}}}\frac{{\rm{7}}}{{\rm{2}}}\\{\rm{ = }}\frac{{{\rm{32}}}}{{\rm{3}}}{\rm{ln(2) - }}\frac{{\rm{7}}}{{\rm{4}}}{\rm{ = 5}}{\rm{.6436}}\end{aligned}\)

Integration is required for the final solution\(\frac{{{\rm{32}}}}{{\rm{3}}}{\rm{ln(2) - }}\frac{{\rm{7}}}{{\rm{4}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free