Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral\(\int {\frac{{\sqrt {2{y^2} - 3} }}{{{y^2}}}} dy\)

Short Answer

Expert verified

\(\int {\frac{{\sqrt {2{y^2} - 3} }}{{{y^2}}}} .dy = ( - )\frac{{\sqrt {2{y^2} - 3} }}{y} + \sqrt 2 \ln |\sqrt 2 y + \sqrt {2{y^2} - 3|} \)+c

Step by step solution

01

Step 1- To Find the integral

\(\begin{aligned}{l}\int {\frac{{\sqrt {2{y^2} - 3} }}{{{y^2}}}dy = \sqrt 2 \int {\frac{{\sqrt {{y^2} - \frac{3}{2}} }}{{{y^2}}}} } .dy\\\end{aligned}\)

\(\sqrt 2 \int {\frac{{\sqrt {{y^2} - ({{\sqrt {\frac{3}{2})} }^{^2}}} }}{{{y^2}}}} .dy\)

02

-Formula used

\(\int {\frac{{\sqrt {{u^2} - {a^2}} }}{{{u^2}}} = ( - )\frac{{\sqrt {{u^2} - {a^2}} }}{u} + \ln |u + \sqrt {{u^2} - {a^2}} |} + c\)

=\(\begin{aligned}{l}\sqrt 2 \left( {\frac{{\sqrt {{y^2} - (\sqrt {\frac{3}{2}{)^2}} } }}{y}} \right] + \ln |y + \sqrt {{y^2} - (\sqrt {\frac{3}{2}{)^2}} |} + c\\\end{aligned}\)

=\(\frac{{( - )\sqrt {2{y^2} - 3} }}{y} + \sqrt 2 \ln |y + \sqrt {{y^2} - \frac{3}{2}|} + \sqrt 2 c\)

=\(( - )\frac{{\sqrt {2{y^2} - 3} }}{y} + \sqrt 2 (\ln |\sqrt {2y} + \sqrt {2{y^2} - 3} | - \ln \sqrt 2 ] + \sqrt 2 c\]

= \(\begin{aligned}{l}( - )\frac{{\sqrt {2{y^2} - 3} }}{y} + \sqrt 2 \ln |\sqrt 2 y + \sqrt {2{y^2} - 3|} + c\\\end{aligned}\)

Where c=\(\)\(\sqrt 2 {c_1} - \sqrt 2 \ln (\sqrt {2)} \)

Hence,\(\)\(\int {\frac{{\sqrt {2{y^2} - 3} }}{y}} .dy = \)\(\begin{aligned}{l}( - )\frac{{\sqrt {2{y^2} - 3} }}{y} + \sqrt 2 \ln |\sqrt 2 y + \sqrt {2{y^2} - 3|} + c\\\end{aligned}\)s

Where c=\(\)\(\sqrt 2 {c_1} - \sqrt 2 \ln (\sqrt {2)} \)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free