Chapter 6: Q6E (page 360)
\(5 - 32\)Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
6. \(\int_0^\infty {\frac{1}{{\sqrt(4){{1 + x}}}}} dx\)
Short Answer
Integral is divergent.
Chapter 6: Q6E (page 360)
\(5 - 32\)Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
6. \(\int_0^\infty {\frac{1}{{\sqrt(4){{1 + x}}}}} dx\)
Integral is divergent.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral: \(\int {x{{\cos }^2}xdx} \)
Evaluate the integral\(\int_{\rm{1}}^{\rm{2}} {\frac{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ - 1}}} }}{{\rm{x}}}} {\rm{dx}}\)
Evaluate the integral: \(\int {xta{n^{ - 1}}xdx} \)
Evaluate the integral\(\begin{aligned}{l}\int\limits_0^\pi {{x^3}} *{\mathop{\rm Sin}\nolimits} x.dx\\\end{aligned}\)
Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answer is not the same, show that they are equivalent.
\(\;\;\int {{{\sec }^4}} xdx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.