Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove the formula \(A = \frac{1}{2}{r^2}\theta \) for the area of a sector of a circle with radius \(r\) and central angle \(\)\(\theta \) . (Hint: Assume \(\)\(0 < \theta < {\raise0.7ex\hbox{\(\pi \)} \!\mathord{\left/

{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{\(2\)}}\) and place the center of the circle at the origin so it has the equation \({x^2} + {y^2} = {r^2}\) . Then \(A\) is the sum of the area of the triangle \(POQ\) and the area of the region \(\)\(PQR\) in the figure.)

Short Answer

Expert verified

We proved that area of the sector is \(\frac{1}{2}{r^2}\theta \)

Step by step solution

01

Step-1: Given

Given curve \({x^2} + {y^2} = {r^2}\)

To prove the area of sector = \(\frac{1}{2}{r^2}\theta \)

\(r\)=Radius

02

Step-2: Calculation of Area

The total area of sector = area of right-angle triangle \(\left( {PO\theta } \right)\) + area of under curve \(\left( {P\theta RP} \right)\)

\(\begin{aligned}{l}{A_1} + {A_2} = \frac{1}{2}O\theta \times OP + \int\limits_{r\cos \theta }^r {\sqrt {{r^2} - {x^2}} dx\left( {y > 0} \right)} \\\frac{1}{2} \times r\cos \theta \times r\sin \theta + \left( {\frac{x}{2}\sqrt {{r^2} - {x^2}} + \frac{{{r^2}}}{2}{{\sin }^{ - 1}}\left( {\frac{x}{r}} \right)} \right)_{r\cos \theta }^r\end{aligned}\)

03

Step-3: Putting an upper limit-lower limit

Total Area =

\(\begin{aligned}{l}\frac{1}{2}{r^2}\cos \theta \sin \theta + 0 + \frac{{{r^2}}}{2}\left( {\frac{\pi }{2}} \right) - \frac{{r\cos \theta }}{2}\sqrt {{r^2} - {r^2}{{\cos }^2}\theta } - \frac{{{r^2}}}{2}{\sin ^{ - 1}}\left( {\frac{{r\cos \theta }}{r}} \right)\\ = \frac{1}{2}{r^2}\cos \theta \sin \theta + \frac{{\pi {r^2}}}{4} - \frac{{{r^2}}}{2}\cos \theta \sin \theta - \frac{{{r^2}}}{2}{\sin ^{ - 1}}\left( {\sin \left( {\frac{\pi }{2} - \theta } \right)} \right)\\ = \frac{1}{2}{r^2}\cos \theta \sin \theta + \frac{{\pi {r^2}}}{4} - \frac{{{r^2}}}{2}\cos \theta \sin \theta - \frac{{{r^2}}}{2}\left( {\frac{\pi }{2} - \theta } \right)\\ = \frac{{{r^2}}}{2}\cos \theta \sin \theta + \frac{{\pi {r^2}}}{4} - \frac{{{r^2}}}{2}\cos \theta \sin \theta - \frac{{\pi {r^2}}}{4} + \frac{1}{2}{r^2}\theta \\ = \frac{1}{2}{r^2}\theta \end{aligned}\)

Hence proved that area of the sector is \(\frac{1}{2}{r^2}\theta \)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free