Chapter 6: Q65E (page 327)
A particle moves on a straight line with velocity function \(v\left( t \right) = sin\omega t\,co{s^2}\omega t\). Find its position function \(s = f\left( t \right)\)if \(f\left( 0 \right) = 0\).
Short Answer
The position function of a particle, that moves on a straight line with velocity function \(v\left( t \right) = sin\omega t\,co{s^2}\omega t\) is \( - \frac{{co{s^3}\omega t}}{{3\omega }} + \frac{1}{{3\omega }}\)when \(f\left( 0 \right) = 0\).