Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the comparison Theorem to determine whether the integral

\(\int\limits_0^\infty {\frac{{{x^3}}}{{{x^5} + 2}}dx} \)is convergent or divergent.

Short Answer

Expert verified

Hence proved the given expression\(\int\limits_1^\infty {\frac{{{x^3}}}{{{x^5} + 2}}dx} \)is convergent

Step by step solution

01

Step 1: Applied the interval

\({x^5} + 2 > {x^5}\)on the interval

\(\begin{aligned}{l}{x^5} + 2 > {x^5}\\\frac{1}{{{x^5} + 2}} < \frac{1}{{{x^5}}}\\\frac{{{x^3}}}{{{x^5} + 2}} < \frac{{{x^3}}}{{{x^5}}}\\ = \frac{1}{{{x^2}}}\end{aligned}\)

02

Step 2: Use the comparison theorem to solve the expression

Ifon the intervalthenconverges ifis convergent

\(\int\limits_1^\infty {\frac{{{x^3}}}{{{x^5} + 2}}dx < \int\limits_1^\infty {\frac{1}{{{x^2}}}dx} } \)

03

Step 3: Final Proof

\(\int\limits_1^\infty {\frac{1}{{{x^p}}}} dx\)is convergent for

Hence\(\int\limits_1^\infty {\frac{1}{{{x^2}}}} dx\)is convergent.

\(\int\limits_1^\infty {\frac{{{x^3}}}{{{x^5} + 2}}dx} = \) convergent

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free