Use the Simpson’s Rule
\({S_n} = \frac{{\Delta t}}{3}\left( {v\left( {{t_0}} \right) + 4v\left( {{t_1}} \right) + 2v\left( {{t_2}} \right) + \cdots + v\left( {{t_n}} \right)} \right)\)
\(\begin{aligned}{l}{S_{10}} &= \frac{{\Delta t}}{3}\left( {v\left( {{t_0}} \right) + 4v\left( {{t_1}} \right) + 2f\left( {{t_2}} \right) + \cdots + v\left( {{t_1}0} \right)} \right)\\ &= \frac{{\frac{1}{{60}}}}{3}(v(0) + 4v(1) + 2v(2) + 4v(3) + 2v(4) + 4v(5) + 2v(6) + 4v(7) + 2v(8) + 4v(9) + v(10))\\ &= \frac{1}{{180}}(40 + 4 \cdot 42 + 2 \cdot 45 + 4 \cdot 49 + 2 \cdot 52 + 4 \cdot 54 + 2 \cdot 56 + 4.57 + 2.57 + 4.55 + 56)\\ \approx 8.58\end{aligned}\)