Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the value of the constant C for which the integral \(\int\limits_0^\infty {\left( {\frac{1}{{\sqrt {{x^2} + 4} }} - \frac{C}{{x + 2}}} \right)dx} \)converges. Evaluate the integral for this value ofC.

Short Answer

Expert verified

\(C = 1\;;\;\;\ln \;\;2\)

Step by step solution

01

Finding the value of C

Given \(\int_0^\infty {\left( {\frac{1}{{\sqrt {{x^2} + 4} }} - \frac{C}{{x + 2}}} \right)} dx\)

\(\begin{aligned}{l}\int_0^\infty {\left( {\frac{1}{{\sqrt {{x^2} + 4} }} - \frac{C}{{x + 2}}} \right)} dx &= \mathop {\lim }\limits_{t \to \infty } \int_0^t {\left( {\frac{1}{{\sqrt {{x^2} + 4} }} - \frac{C}{{x + 2}}} \right)dx} \\ &\Rightarrow \mathop {\lim }\limits_{t \to \infty } \int_0^t {\left( {\frac{1}{{\sqrt {{x^2} + 4} }} - \frac{C}{{x + 2}}} \right)dx} \end{aligned}\)

and

\(\begin{aligned}{c} &\Rightarrow \mathop {\lim }\limits_{t \to \infty } \left( {\ln \left| {x + \sqrt {{x^2} + 4} } \right| - C\ln (x + 2)} \right)_0^t\\ &\Rightarrow \mathop {\lim }\limits_{t \to \infty } \left( {\ln \left| {x + \sqrt {{x^2} + 4} } \right| - \ln {{(x + 2)}^c}} \right)_0^t\\ &\Rightarrow \mathop {\lim }\limits_{t \to \infty } \left( {\ln \frac{{\left| {x + \sqrt {{x^2} + 4} } \right|}}{{{{(x + 2)}^c}}}} \right)_0^t\end{aligned}\)

If here we put \(t = \infty \), then the integral will be divergent \(\int_0^\infty {\left( {\frac{1}{{\sqrt {{x^2} + 4} }} - \frac{C}{{x + 2}}} \right)} dx = \infty \)

So, for making it convergent, we will take x common and try to eliminate it

\( &\Rightarrow \) &\( \Rightarrow \mathop {\lim }\limits_{t \to \infty } \left( {\log \left| {\frac{{x(1 + \sqrt {1 + \frac{4}{{{x^2}}}} }}{{{x^c}{{(1 + \frac{2}{x})}^c}}}} \right|} \right)_0^t\)

In above equation \(x\)should be equal to \({x^c}\) for convergence of the given integral

\(\begin{aligned}{c} \Rightarrow x = {x^c}\\ \Rightarrow C = 1\end{aligned}\)

Hence the value of C is 1

02

Evaluation of Integral \(\int\limits_0^\infty  {\left( {\frac{1}{{\sqrt {{x^2} + 4} }} - \frac{C}{{x + 2}}} \right)dx} \)

From above equation \(\mathop {\lim }\limits_{t \to \infty } \left( {\ln \left| {\frac{{x(1 + \sqrt {1 + \frac{4}{{{x^2}}}} }}{{{x^c}{{(1 + \frac{2}{x})}^c}}}} \right|} \right)_0^t\)

After solving the given equation for that it converges, we get \(C = 1\;{\rm{and}}\;\int_0^\infty {\left( {\frac{1}{{\sqrt {{x^2} + 4} }} - \frac{C}{{x + 2}}} \right)} dx = \ln \;\;2\)

Hence the value of the integral is ln 2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free