Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the Equation \(\int {\frac{1}{{\sqrt {9{x^2} + 6x - 8} }}dx} \)

Short Answer

Expert verified

The value of the integral is,

\(\frac{1}{3}\ln \left| {x + \frac{1}{3} + \sqrt {{{(x + \frac{1}{3})}^2} - 1} } \right| + c'\)

Explanation: Complete the square under the square root given in the integral. Substitute u = 3x+1 and then evaluate the integral

Step by step solution

01

Step 1:Given Data

Complete the Square under the square root

\(\begin{aligned}{l}\int {\frac{1}{{\sqrt {9{x^2} + 6x - 8} }}dx} &= \int {\frac{1}{{\sqrt {{{(3x)}^2} + 2.(3x).1 + 1 - 1 - 8} }}} \\ &= \int {\frac{1}{{\sqrt {{{(3x + 1)}^2} - 9} }}dx} \end{aligned}\)

Substitute u = 3x+1

Let u = 3x+1

du = 3dx

\(\int {\frac{1}{{\sqrt {{{(3x + 1)}^2} - 9} }}dx = \frac{1}{3}\int {\frac{{du}}{{\sqrt {{u^2} - 9} }}} } \)

\(\begin{aligned}{l}\\\int {\frac{{dx}}{{\sqrt {{x^2} - {a^2}} }} = \ln \left| {x + \sqrt {{x^2} + {a^2}} } \right|} + c\end{aligned}\)

∴ \(\frac{1}{3}\int {\frac{{du}}{{\sqrt {{u^2} - 9} }} = \frac{1}{3}\ln \left| {x + \sqrt {{x^2} + {a^2}} } \right|} + c\)

Convert the value of the integral in terms of x

\(\begin{aligned}{l}\frac{1}{3}\ln \left| {3x + 1 + \sqrt {{{(3x + 1)}^2} - 9} } \right| + c\\\frac{1}{3}\ln \left| {3(x + \frac{1}{3}) + \sqrt {9{{(x + \frac{1}{3})}^2} - 1} } \right| + c\\\frac{1}{3}\ln \left| {3\left\{ {x + \frac{1}{3}} \right. + \left. {\sqrt {{{(x + \frac{1}{3})}^2} - 1} } \right\}} \right| + c\\\frac{1}{3}\ln \left| 3 \right| + \frac{1}{3}\ln \left| {x + \frac{1}{3} + \sqrt {{{(x + \frac{1}{3})}^2} - 1} } \right| + c\\\frac{1}{3}\ln \left| {x + \frac{1}{3} + \sqrt {{{(x + \frac{1}{3})}^2} - 1} } \right| + c'\\\end{aligned}\)

Final Answer:

Hence, \(\int {\frac{1}{{\sqrt {9{x^2} + 6x - 8} }}dx = \frac{1}{3}\ln \left| {x + \frac{1}{3} + \sqrt {{{(x + \frac{1}{3})}^2} - 1} } \right|} + c'\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free