Chapter 6: Q60E (page 362)
Show that \(\int_0^\infty {{e^{ - {x^2}}}} dx = \int_0^1 {\sqrt { - \ln y} } dy\)by interrupting the integrals as areas.
Short Answer
Proved
Chapter 6: Q60E (page 362)
Show that \(\int_0^\infty {{e^{ - {x^2}}}} dx = \int_0^1 {\sqrt { - \ln y} } dy\)by interrupting the integrals as areas.
Proved
All the tools & learning materials you need for study success - in one app.
Get started for free\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_0^{\pi /2} {\sin } \theta {e^{\cos \theta }}d\theta \)
Evaluate the integral:\(\int {\frac{{{x^2} + 2x - 1}}{{{x^3} - x}}dx} \)
Evaluate the integral\(\begin{aligned}{l}\int\limits_0^\pi {{x^3}} *{\mathop{\rm Sin}\nolimits} x.dx\\\end{aligned}\)
Evaluate the integral:\(\int\limits_0^1 {\frac{{2x + 3}}{{{{(x + 1)}^2}}}} \)
Evaluate the integral\(\int {{{{\mathop{\rm Sin}\nolimits} }^6}2x.dx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.