Chapter 6: Q5E (page 326)
\(\int\limits_0^{\frac{\pi }{2}} {co{s^2}\theta \,d\theta } \)To find the value of a given definite integral.
Short Answer
\(\frac{\pi }{4}\)is the answer to a given question.
Chapter 6: Q5E (page 326)
\(\int\limits_0^{\frac{\pi }{2}} {co{s^2}\theta \,d\theta } \)To find the value of a given definite integral.
\(\frac{\pi }{4}\)is the answer to a given question.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answer is not the same, show that they are equivalent.
\(\;\;\int {{{\sec }^4}} xdx\)
Evaluate the integral:\(\int\limits_0^1 {\frac{{{x^3} - 4x - 10}}{{{x^2} - x - 6}}} dx\)
Evaluate the integral:\(\int {\frac{y}{{(y + 4)(2y - 1)}}} dy\).
Write out the form of partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.
(a) \(\frac{{{x^6}}}{{{x^2} - 4}}\)
(b) \(\frac{{{x^4}}}{{\left( {{x^2} - x + 1} \right){{\left( {{x^2} + 2} \right)}^2}}}\)
Evaluate the integral\(\int {\frac{1}{{(x + a)(x + b)}}} dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.