Chapter 6: Q5E (page 363)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int {\frac{{dt}}{{2{t^2} + 3t + 1}}} \)
Short Answer
\(\int {\frac{{dt}}{{2{t^2} + 3t + 1}}} = \ln |2t + 1| - \ln |t + 1| + C\)
Chapter 6: Q5E (page 363)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int {\frac{{dt}}{{2{t^2} + 3t + 1}}} \)
\(\int {\frac{{dt}}{{2{t^2} + 3t + 1}}} = \ln |2t + 1| - \ln |t + 1| + C\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the Integral
\(\int {cose{c^4}x\,co{t^6}x\,dx} \)
Evaluate the integral\(\int {\frac{{{\rm{sin(lnt)}}}}{{\rm{t}}}} {\rm{dt}}\)
Evaluate the integral\(\int {y\sqrt {6 + 4y - 4{y^2}} } .dy\)\(\)
Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.
\(\int {{x^2}} \sqrt {1 - {x^2}} dx\)
Evaluate the integral:\(\int {\frac{{{x^2} + 2x - 1}}{{{x^3} - x}}dx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.