Chapter 6: Q57E (page 326)
Evaluate the Equation\(\int {\frac{{\sqrt {1 + {x^2}} }}{x}} \,dx\)
Short Answer
The value of the given integral is
\(\left( {\frac{1}{2}ln\left( {\frac{1}{{\sqrt {{x^2} + 1} }} - 1} \right) + \sqrt {{x^2} + 1} - \frac{1}{2}ln\left( {\frac{1}{{\sqrt {{x^2} + 1} }} + 1} \right)} \right) + c\)
Suppose\(x = tan\,t\)and convert the given integral in terms of\(t\)and then integrate it with respect to\(t\). After integration, again integration, again put the value of \(t\) as \(t = ta{n^{ - 1}}x\).