Chapter 6: Q57 E (page 326)
Evaluate the Equation\[\int {\frac{{\sqrt {1 + {x^2}} }}{x}} \,dx\]
Short Answer
The value of the given integral is
\[\left[ {\frac{1}{2}ln\left( {\frac{1}{{\sqrt {{x^2} + 1} }} - 1} \right) + \sqrt {{x^2} + 1} - \frac{1}{2}ln\left( {\frac{1}{{\sqrt {{x^2} + 1} }} + 1} \right)} \right] + c\]
Suppose\[x = tan\,t\]and convert the given integral in terms of\[t\]and then integrate it with respect to\[t\]. After integration, again integration, again put the value of \[t\] as \[t = ta{n^{ - 1}}x\].