Chapter 6: Q56E (page 326)
Evaluate the integral \(\int\limits_0^1 {\sqrt {{x^2} + 1} } \,\,dx\).
Short Answer
The Evaluation of Equation gives us ,\(\int\limits_0^1 {\sqrt {{x^2} + 1} } \,\,dx = 0.8012 + c\)
Chapter 6: Q56E (page 326)
Evaluate the integral \(\int\limits_0^1 {\sqrt {{x^2} + 1} } \,\,dx\).
The Evaluation of Equation gives us ,\(\int\limits_0^1 {\sqrt {{x^2} + 1} } \,\,dx = 0.8012 + c\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a computer algebra system to evaluate the integral. Compare the answer with the result using tables. If the answer is not the same, show that they are equivalent.
\(\int {\cos e{c^5}xdx} \)
Evaluate the integral\(\int\limits_0^{{\pi \mathord{\left/
{\vphantom {\pi 4}} \right.
\kern-\nulldelimiterspace} 4}} {{{\tan }^4}tdt} \)
Evaluate the integral \(\int {{{\sin }^3}x{{\cos }^3}xdx} \)
Evaluate the integral: \(\int {xta{n^{ - 1}}xdx} \)
Integration of \(\int\limits_0^\pi {co{s^4}(2t)dt} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.