Chapter 6: Q56 E (page 326)
Evaluate the integral \[\int\limits_0^1 {\sqrt {{x^2} + 1} } \,\,dx\].
Short Answer
The Evaluation of Equation gives us ,\[\int\limits_0^1 {\sqrt {{x^2} + 1} } \,\,dx = 0.8012 + c\]
Chapter 6: Q56 E (page 326)
Evaluate the integral \[\int\limits_0^1 {\sqrt {{x^2} + 1} } \,\,dx\].
The Evaluation of Equation gives us ,\[\int\limits_0^1 {\sqrt {{x^2} + 1} } \,\,dx = 0.8012 + c\]
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the Integral \(\begin{aligned}{l}\int {\sqrt {{e^{2x}} - 1} dx} \\\end{aligned}\)
Evaluate the integral \(\int {{{\sin }^3}x{{\cos }^3}xdx} \)
Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.
\(\int {{x^2}} \sqrt {1 - {x^2}} dx\)
Evaluate the integral\(\int {\frac{{{\rm{dx}}}}{{{{\rm{x}}^{\rm{2}}}\sqrt {{\rm{1 + }}{{\rm{x}}^{\rm{2}}}} }}} \)
Evaluate the integral\(\int {{{\tan }^5}} xdx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.