Chapter 6: Q55E (page 326)
Evaluate the integral \(\int {\frac{x}{{\sqrt {{x^2} - 7} }}dx} \)
Short Answer
The Evaluation of Equation Gives us,\(\int {\frac{x}{{\sqrt {{x^2} - 7} }}dx} = \sqrt {{x^2} - 7} + c\)
Chapter 6: Q55E (page 326)
Evaluate the integral \(\int {\frac{x}{{\sqrt {{x^2} - 7} }}dx} \)
The Evaluation of Equation Gives us,\(\int {\frac{x}{{\sqrt {{x^2} - 7} }}dx} = \sqrt {{x^2} - 7} + c\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the Integral\(\int {{e^t}\sin \left( {\alpha t - 3} \right)dt} \)
Evaluate the integral\(\int {{{\sin }^{ - 1}}\sqrt x .dx} \)
Write out the form of the partial fraction decomposition of the function (as in Example 6). Do not determine the numerical values of the coefficients.
(a)\(\frac{{{x^4} + 1}}{{{x^3} + 4{x^3}}}\)
Evaluate the integral: \(\int {\tan x{{\sec }^3}xdx} \).
To determine the value of the integral function.
What do you think about this solution?
We value your feedback to improve our textbook solutions.