The given integral equation is\(M = - k\int_0^\infty t {e^{kt}}dt\).
Substitute\(u = t,dv = {e^{kt}}dt,v = \frac{1}{k}{e^{kt}}\), and\(du = dt\).
Using the above definition, rewrite the given integral as shown below:
\(\begin{aligned}{c}M &= - k\int_0^\infty t {e^{kt}}dt\\ &= - k\mathop {\lim }\limits_{x \to {0^ + }} \int_0^x t {e^{kt}}dt\end{aligned}\)
Using integration by parts, obtain the value of the above integral as shown below:
\(\begin{aligned}{c}M &= - k\mathop {\lim }\limits_{x \to {0^ + }} \int_0^x t {e^{kt}}dt\\ &= - k\mathop {\lim }\limits_{x \to {0^ + }} \left\{ {\left( {t\left( {\frac{1}{k}} \right){e^{kt}}} \right)_0^x - \int_0^\infty {\frac{1}{k}} {e^{kt}}dt} \right\}\\ &= - k\mathop {\lim }\limits_{x \to {0^ + }} \left( {t\left( {\frac{1}{k}} \right){e^{kt}} - \frac{1}{{{k^2}}}{e^{kt}}} \right)_0^x\\ &= - k\mathop {\lim }\limits_{x \to {0^ + }} \left( {\left( {t - \frac{1}{k}} \right)\frac{{{e^{kt}}}}{k}} \right)_0^x\\ &= - k\mathop {\lim }\limits_{x \to {0^ + }} \left( {\left( {t - \frac{1}{k}} \right)\frac{{{e^{ - (0.000121\;t)}}}}{k}} \right)_0^x\end{aligned}\)
The above equation can be further simplified as shown below:
Therefore, the mean life of the carbon isotope\(^{14}C\)atom is 8264.5 years.