Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \(\int_{ - \infty }^a f (x)dx\)is convergent and a and b are real numbers, Show that\(\int_{ - \infty }^a f (x)dx + \int_a^\infty f (x)dx = \int_{ - \infty }^b f (x)dx + \int_b^\infty f (x)dx\).

Short Answer

Expert verified

Proved

Step by step solution

01

Given Data

The given integral\(\int_{ - \infty }^\infty f (x)dx\)is continuous.

The values of \(a\) and \(b\) are real numbers.

02

Evaluating the Given Expression

Consider the value\(a < b\).

Show the integral as follows:

Calculating RHS of Eq.1

\(\begin{aligned}{c}\int_{ - \infty }^\infty f (x)dx &= \int_{ - \infty }^a f (x)dx + \int_a^\infty f (x)dx.......(1)\\\int_{ - \infty }^a f (x)dx + \int_a^\infty f (x)dx &= \mathop {\lim }\limits_{t \to - \infty } \int_t^a f (x)dx + \mathop {\lim }\limits_{s \to \infty } \int_a^s f (x)dx\\ &= \mathop {\lim }\limits_{t \to - \infty } \int_t^a f (x)dx + \mathop {\lim }\limits_{s \to \infty } \left( {\int_a^b f (x)dx + \int_b^s f (x)dx} \right)\\ &= \mathop {\lim }\limits_{t \to - \infty } \int_t^a f (x)dx + \int_a^b f (x)dx + \mathop {\lim }\limits_{s \to \infty } \left( {\int_b^s f (x)dx} \right)\\ &= \left( {\mathop {\lim }\limits_{t \to - \infty } \int_t^a f (x)dx + \int_a^b f (x)dx} \right) + \int_b^\infty f (x)dx\\\int_{ - \infty }^a f (x)dx + \int_a^\infty f (x)dx &= \left( {\mathop {\lim }\limits_{t \to - \infty } \int_t^a f (x)dx + \mathop {\lim }\limits_{t \to - \infty } \int_a^b f (x)dx} \right) + \int_b^\infty f (x)dx\\ &= \left( {\mathop {\lim }\limits_{t \to - \infty } \int_t^b f (x)dx} \right) + \int_b^\infty f (x)dx\\ &= \int_{ - \infty }^b f (x)dx + \int_b^\infty f (x)dx\end{aligned}\)

Thus, the expression\(\int_{ - \infty }^a f (x)dx + \int_a^\infty f (x)dx = \int_{ - \infty }^b f (x)dx + \int_b^\infty f (x)dx\)is proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free