Chapter 6: Q52E (page 361)
If \(\int_{ - \infty }^a f (x)dx\)is convergent and a and b are real numbers, Show that\(\int_{ - \infty }^a f (x)dx + \int_a^\infty f (x)dx = \int_{ - \infty }^b f (x)dx + \int_b^\infty f (x)dx\).
Short Answer
Proved
Chapter 6: Q52E (page 361)
If \(\int_{ - \infty }^a f (x)dx\)is convergent and a and b are real numbers, Show that\(\int_{ - \infty }^a f (x)dx + \int_a^\infty f (x)dx = \int_{ - \infty }^b f (x)dx + \int_b^\infty f (x)dx\).
Proved
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral\(\int_{\rm{0}}^{\rm{1}} {\frac{{\sqrt {{\rm{arctanx}}} }}{{{\rm{1 + }}{{\rm{x}}^{\rm{2}}}}}} {\rm{dx}}\)
Integration of \(\int\limits_0^\pi {co{s^4}(2t)dt} \)
Evaluate the Integral \(\begin{aligned}{l}\int {\sqrt {{e^{2x}} - 1} dx} \\\end{aligned}\)
Evaluate the integral:\(\int {\frac{y}{{(y + 4)(2y - 1)}}} dy\).
Evaluate the integral: \(\int\limits_1^2 {\frac{{4{y^2} - 7y - 12}}{{y(y + 2)(y - 3)}}dy} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.