Chapter 6: Q4E (page 363)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_0^{\frac{\pi }{6}} t \sin 2tdt\)
Short Answer
\(\int_0^{\frac{\pi }{6}} t \sin 2tdt = \frac{{3\sqrt 3 - \pi }}{{24}}\)
Chapter 6: Q4E (page 363)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_0^{\frac{\pi }{6}} t \sin 2tdt\)
\(\int_0^{\frac{\pi }{6}} t \sin 2tdt = \frac{{3\sqrt 3 - \pi }}{{24}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeif f is a quadratic function such that \(f(0) = 1\) and \(\int {\frac{{f(x)}}{{{x^2}{{(x + 1)}^3}}}dx} \) is a rational function, find the value of \(f'(0)\)
Evaluate the integral\(\)\(\int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{{\mathop{\rm Sin}\nolimits} }^2}x - 9}}} .dx\)
Evaluate the integral:\(\int {\frac{{5x + 1}}{{(2x + 1)\left( {x - 1} \right)}}} dx\).
Evaluate the Integral \(\int {\frac{{{e^x}}}{{3 - {e^{2x}}}}dx} \).
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int {\frac{{dt}}{{2{t^2} + 3t + 1}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.