Chapter 6: Q47E (page 335)
if \(a \ne 0\) and n is a positive integer, find the partial fraction decomposition of \(f(x) = \frac{1}{{{x^n}(x - a)}}\)
Short Answer
The partial fraction decomposition of the given function can be given as:
\(\frac{1}{{{x^n}(x - a)}} = \frac{1}{{{a^n}(x - a)}} - \frac{1}{{{a^n}x}} - \frac{1}{{{a^{n - 1}}{x^2}}}....... - \frac{1}{{a{x^n}}}\)