Since,\(\int {\frac{1}{{\sqrt {{x^2} + {a^2}} }}} \)=\({\sinh ^{ - 1}}({\textstyle{x \over a}})\)+c
Or\(\int {\frac{1}{{\sqrt {{x^2} + {a^2}} }}} = \log |x + \sqrt {{x^2} + {a^2}} | + c\)
\(\int {\frac{1}{{\sqrt {{x^2} + 16} }}} = \int {\frac{1}{{\sqrt {{x^2} + {{(4)}^2}} }}} .dx\)
= sinh-1(x/4) +c
Therefore ,\(\int {\frac{{dx}}{{\sqrt {{x^2} + 16} }}} = {\sinh ^{ - 1}}(\frac{x}{4}) + c\)
(or)
\(\int {\frac{1}{{\sqrt {{x^2} + 16} }}} = \log |x + \sqrt {{x^2} + 16} | + c\)
Hence, the indefinite integration of \(\int {\frac{{dx}}{{\sqrt {{x^2} + 16} }}} \)is sinh-1(x/4) +c
\(\log |x + \sqrt {{x^2} + 16} | + c\)