Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the Integral

\(\int {\frac{{dx}}{{\sqrt {{x^2} + 16} }}} \)

Short Answer

Expert verified

Hence, the indefinite integration of \(\int {\frac{{dx}}{{\sqrt {{x^2} + 16} }}} \)is sinh-1(x/4) +c

\(\log |x + \sqrt {{x^2} + 16} | + c\)

Step by step solution

01

Step-1:- Given Data

Convert the given into\(\log |x + \sqrt {{x^2} + 16} | + c\)\(\int {\frac{1}{{\sqrt {{x^2} + {a^2}} }}} .dx\)

=\(\int {\frac{{dx}}{{\sqrt {{x^2} + 16} }}} \)=\(\int {\frac{{dx}}{{\sqrt {{x^2} + 16} }}} \).dx

=\(\int {\frac{1}{{\sqrt {{x^2} + {{(4)}^2}} }}} .dx\)

Here a=4

02

Step2:- Apply the corresponding formula

Since,\(\int {\frac{1}{{\sqrt {{x^2} + {a^2}} }}} \)=\({\sinh ^{ - 1}}({\textstyle{x \over a}})\)+c

Or\(\int {\frac{1}{{\sqrt {{x^2} + {a^2}} }}} = \log |x + \sqrt {{x^2} + {a^2}} | + c\)

\(\int {\frac{1}{{\sqrt {{x^2} + 16} }}} = \int {\frac{1}{{\sqrt {{x^2} + {{(4)}^2}} }}} .dx\)

= sinh-1(x/4) +c

Therefore ,\(\int {\frac{{dx}}{{\sqrt {{x^2} + 16} }}} = {\sinh ^{ - 1}}(\frac{x}{4}) + c\)

(or)

\(\int {\frac{1}{{\sqrt {{x^2} + 16} }}} = \log |x + \sqrt {{x^2} + 16} | + c\)

Hence, the indefinite integration of \(\int {\frac{{dx}}{{\sqrt {{x^2} + 16} }}} \)is sinh-1(x/4) +c

\(\log |x + \sqrt {{x^2} + 16} | + c\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free