Chapter 6: Q46E (page 361)
41-46 use the comparison theorem to determinewhether the integral function is convergent or divergent.
\(\int_0^\pi {\frac{{{{\sin }^2}x}}{{\sqrt x }}} dx\)
Short Answer
The integral function is convergent.
Chapter 6: Q46E (page 361)
41-46 use the comparison theorem to determinewhether the integral function is convergent or divergent.
\(\int_0^\pi {\frac{{{{\sin }^2}x}}{{\sqrt x }}} dx\)
The integral function is convergent.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral: \(\int {x{{\cos }^2}xdx} \)
Evaluate the integral :
\(\int {\frac{{{x^4}}}{{x - 1}}dx} \)
Evaluate the integral\(\)\(\int {{{{\mathop{\rm Sin}\nolimits} }^2}x*{\mathop{\rm Cos}\nolimits} x*\ln ({\mathop{\rm Sin}\nolimits} x)dx} \)
Evaluate the integral\(\int {\frac{{3t - 2}}{{t + 1}}} dt\).
Evaluate the integral: \(\int\limits_0^1 {\frac{{x - 4}}{{{x^2} - 5x + 6}}} dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.