\(\int\limits_0^{\pi /4} {\frac{{a{{\sec }^2}\theta d\theta }}{{{{\left( {{a^2} + {{\left( {a\tan \theta } \right)}^2}} \right)}^{3/2}}}}} \)( since, \( - \frac{\pi }{2} < \theta < \frac{\pi }{2}\))
\(\int\limits_0^{\pi /4} {\frac{{a{{\sec }^2}\theta }}{{{{\left( {{a^2} + {{\left( {a\tan \theta } \right)}^2}} \right)}^{3/2}}}}} .d\theta \)
\(\int\limits_0^{\pi /4} {\frac{{a{{\sec }^2}\theta }}{{{{\left( {{a^3}{{\left( {1 + {{\tan }^2}\theta } \right)}^{3/2}}} \right)}^{}}}}.d\theta } \)
\(\int\limits_0^{\pi /4} {\left( {\frac{1}{{{a^4}}}} \right).\left( {\frac{{{{\sec }^2}\theta }}{{{{\left( {1 + {{\tan }^2}\theta } \right)}^{3/2}}}}} \right).d\theta } \)
\(\left( {\frac{1}{{{a^2}}}} \right)\int\limits_0^{\pi /4} {\left( {\frac{{{{\sec }^2}\theta }}{{{{\left( {{{\sec }^2}\theta } \right)}^{3/2}}}}} \right).d\theta = } \left( {\frac{1}{{{a^2}}}} \right)\int\limits_0^{\pi /4} {\left( {\frac{{{{\sec }^2}\theta }}{{\left( {{{\sec }^3}\theta } \right)}}} \right).d\theta } \)
\(\left( {\frac{1}{{{a^2}}}} \right)\int\limits_0^{\pi /4} {\frac{1}{{\sec \theta }}.d\theta } \)
\(\int\limits_0^a {\frac{{dx}}{{{{\left( {{a^2} + {x^2}} \right)}^{3/2}}}} = \int\limits_0^{\pi /4} {\frac{{a{{\sec }^2}\theta d\theta }}{{{{\left( {{a^2} + {{\left( {a\tan \theta } \right)}^2}} \right)}^{3/2}}}}} } \)
\(\begin{aligned}{l} &= \int\limits_0^{\pi /4} {\frac{1}{{\sec \theta }}d\theta .\left( {\frac{1}{{{a^2}}}} \right)} \\ &= \int\limits_0^{\pi /4} {\cos \theta d\theta .\left( {\frac{1}{{{a^2}}}} \right)} \end{aligned}\)
Since, \(\frac{1}{{\sec \theta }} = \cos \theta \)