Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

41-46 use the comparison theorem to determinewhether the integral function is convergent or divergent.

\(\int_0^1 {\frac{{{{\sec }^2}x}}{{x\sqrt x }}} dx\)

Short Answer

Expert verified

The integral function is divergent.

Step by step solution

01

Definition of comparison theorem

Comparison Theorem:

Assume that\(f\)and\(g\)are continuous functions with\(f(x) \ge g(x) \ge 0\)for\(x \ge a\).

(a) If\(\int_a^\infty f (x)dx\)is convergent, then\(\int_a^\infty f (x)dx\)is convergent.

(b) If\(\int_a^\infty f (x)dx\)is divergent, then\(\int_a^\infty f (x)dx\)is divergent

02

Substitute 1 for x in equation (2) and (3)

Given\(\int_0^1 {\frac{{{{\sec }^2}x}}{{x\sqrt x }}} dx \cdot \cdot \cdot \cdot \cdot \cdot \left( 1 \right)\)

Consider the value of the function\(f(x) = \frac{{{{\sec }^2}x}}{{x\sqrt x }} \cdot \cdot \cdot \cdot \cdot \cdot \left( 2 \right)\)

Consider the value of the function\(g(x) = \frac{1}{{{x^{\frac{3}{2}}}}} \cdot \cdot \cdot \cdot \cdot \cdot \left( 3 \right)\)

Calculate the value of\(f(x)\)within limits (0,1) using Equation (2).

Substitute 1 for x in Equation (2),

\(\begin{aligned}{l}f(x) &= \frac{{{{\sec }^2}(1)}}{{1\sqrt 1 }}\\f(x) &= 3.4255\end{aligned}\)

Calculate the value of\(g(x)\)within limits (0,1) using Equation (3).

Substitute 1 for x in Equation (3)

\(\begin{aligned}{c}g(x) &= \frac{1}{{{x^{\frac{3}{2}}}}}\\g(x) &= \frac{1}{{{1^{\frac{3}{2}}}}}\\g(x) &= 1\end{aligned}\)

Compare the value of \(f(x)\)and\(g(x)\)within limits (0,1).

Get \(f(x) \ge g(x)\)

03

Check the integral function is either   convergent or divergent

Compare the value of\(f(x)\)and\(g(x)\)within limits (0,1).

Get\(f(x) \ge g(x)\)

Check whether the integral function\(\int_0^1 g (x)dx\)is convergent or divergent.\(\begin{aligned}{l}\int_0^1 g (x)dx &= \int_0^1 {\frac{1}{{{x^{\frac{3}{2}}}}}} dx\\\int_0^1 g (x)dx &= \int_t^1 {{x^{ - \frac{3}{2}}}} dx\\\int_0^1 g (x)dx &= - \frac{3}{2}\left( {{x^{ - \frac{3}{2} - 1}}} \right)_0^\infty \\\int_0^1 g (x)dx &= - \frac{3}{2}\left( {{x^{ - \frac{5}{2}}}} \right)_0^\infty \\\int_0^1 g (x)dx &= - \frac{3}{2}\left( {{\infty ^{ - \frac{5}{2}}} - 0} \right)\\\int_0^1 g (x)dx &= \infty \end{aligned}\)

The integral function\(\int_0^1 g (x)dx\)is divergent.

Refer to part (a) of the Comparison Theorem.

The integral function\(f(x)\)and\(g(x)\)are continuous function and\(f(x) \ge g(x)\).

The integral function\(\int_0^1 g (x)dx\) is divergent, therefore\(\int_0 f (x)dx\) is divergent.

Hence, the integral function is divergent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free