Chapter 6: Q45E (page 361)
41-46 use the comparison theorem to determinewhether the integral function is convergent or divergent.
\(\int_0^1 {\frac{{{{\sec }^2}x}}{{x\sqrt x }}} dx\)
Short Answer
The integral function is divergent.
Chapter 6: Q45E (page 361)
41-46 use the comparison theorem to determinewhether the integral function is convergent or divergent.
\(\int_0^1 {\frac{{{{\sec }^2}x}}{{x\sqrt x }}} dx\)
The integral function is divergent.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral\(\begin{aligned}{l}\int\limits_0^\pi {{x^3}} *{\mathop{\rm Sin}\nolimits} x.dx\\\end{aligned}\)
Evaluate the integral\(\int {\frac{{\sqrt {2{y^2} - 3} }}{{{y^2}}}} dy\)
Evaluate the Integral
\(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {co{t^5}\phi cose{c^3}\phi } \,d\phi \)
Evaluate the integral \(\int\limits_0^{{\raise0.7ex\hbox{\(\pi \)} \!\mathord{\left/
{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{\(2\)}}} {{{\sin }^5}xdx} \)
Evaluate the integral\(\)\(\int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{{\mathop{\rm Sin}\nolimits} }^2}x - 9}}} .dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.