Chapter 6: Q44E (page 326)
\(\int\limits_0^2 {{x^3}\sqrt {{x^2} + 4} } dx\) Evaluate the integral
Short Answer
After evaluation \(\int\limits_0^2 {{x^3}\sqrt {{x^2} + 4} } dx\),will be equal to \(\frac{{65}}{{14}}\left( {\sqrt 2 + 1} \right)\)
Chapter 6: Q44E (page 326)
\(\int\limits_0^2 {{x^3}\sqrt {{x^2} + 4} } dx\) Evaluate the integral
After evaluation \(\int\limits_0^2 {{x^3}\sqrt {{x^2} + 4} } dx\),will be equal to \(\frac{{65}}{{14}}\left( {\sqrt 2 + 1} \right)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_0^{\frac{\pi }{6}} t \sin 2tdt\)
Evaluate the integral \(\int {{{\sin }^3}\theta {{\cos }^4}} \theta d\theta \)
Integration of \(\int\limits_0^\pi {co{s^4}(2t)dt} \)
Write out the form of the partial fraction decomposition of the function (as in Example 6). Do not determine the numerical values of the coefficients.
(a)
\(\frac{{{x^4} - 2{x^3} + {x^2} + 2x - 1}}{{{x^2} - 2x + 1}}\)
(b)
\(\frac{{{x^2} - 1}}{{{x^3} + {x^2} + x}}\)
Evaluate the integral: \(\int {x{{\cos }^2}xdx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.