I=\(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {{{\cos }^2}x.dx} \)
I=\(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{1}{2}} \left( {1 + \cos x} \right).dx\)
I=\(\frac{1}{2}\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {dx + } \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {{{\cos }^2}x.du} \)
I=\(\frac{1}{2}|x|_{\frac{\pi }{4}}^{\frac{\pi }{3}} + \frac{1}{2}|\frac{{\sin 2x}}{e}|_{\frac{\pi }{4}}^{\frac{\pi }{3}}\)
I= \(\frac{1}{2}|\frac{\pi }{3} - \frac{\pi }{4}| + \frac{1}{2}|\frac{{\sin 2\frac{\pi }{3} - \sin \frac{\pi }{2}}}{2}\)
I=\(\frac{\pi }{{24}} + \frac{{\sqrt 3 }}{8} - \frac{1}{4}\)
Answer:-
Hence ,after evaluating , \(\int\limits_{\sqrt 2 }^2 {\frac{{dt}}{{{t^3}\sqrt {{t^2} - 1} }}} \)will be equal to \(\frac{\pi }{{24}} + \frac{{\sqrt 3 }}{8} - \frac{1}{4}\)