Chapter 6: Q42E (page 353)
Show that \(\frac{1}{3}{T_n} + \frac{2}{3}{M_n} = {S_{2n}}\).
Short Answer
Hence, the prove for \(\frac{1}{3}{T_n} + \frac{2}{3}{M_n} = {S_{2n}}\) is obtained.
Chapter 6: Q42E (page 353)
Show that \(\frac{1}{3}{T_n} + \frac{2}{3}{M_n} = {S_{2n}}\).
Hence, the prove for \(\frac{1}{3}{T_n} + \frac{2}{3}{M_n} = {S_{2n}}\) is obtained.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral\(\int {\frac{{\sqrt {2{y^2} - 3} }}{{{y^2}}}} dy\)
Evaluate the Integral: \(\int {{{\tan }^2}} xdx\)
Evaluate the integral\(\int {\frac{{{\rm{sin(lnt)}}}}{{\rm{t}}}} {\rm{dt}}\)
Evaluate the integral \(\int\limits_0^{{\pi \mathord{\left/
{\vphantom {\pi 3}} \right.
\kern-\nulldelimiterspace} 3}} {{{\tan }^3}x\sec xdx} \)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_1^2 {\frac{x}{{{{(x + 1)}^2}}}} dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.