Chapter 6: Q42E (page 326)
Evaluate the integral
\(\int\limits_0^1 {{x^3}} \sqrt {1 - {x^2}} .dx\)
Short Answer
The integration \(\int\limits_0^1 {{x^3}\sqrt {1 - {x^2}} } .dx\)after solving will be equal to\(\frac{3}{{10.}}\)
Chapter 6: Q42E (page 326)
Evaluate the integral
\(\int\limits_0^1 {{x^3}} \sqrt {1 - {x^2}} .dx\)
The integration \(\int\limits_0^1 {{x^3}\sqrt {1 - {x^2}} } .dx\)after solving will be equal to\(\frac{3}{{10.}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral\(\begin{aligned}{l}\int\limits_0^\pi {{x^3}} *{\mathop{\rm Sin}\nolimits} x.dx\\\end{aligned}\)
Using the table of integral on reference page no:6-10,evaluate the integral.
\(\begin{aligned}{l}\int\limits_0^2 {{x^2}} \sqrt {4 - {x^2}} .dx\\\end{aligned}\)
Evaluate the integral \(\int {{{\sin }^3}x{{\cos }^3}xdx} \)
Evaluate the integral:\(\int\limits_0^1 {\frac{{{x^3} - 4x - 10}}{{{x^2} - x - 6}}} dx\)
Evaluate the integral\(\int {y\sqrt {6 + 4y - 4{y^2}} } .dy\)\(\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.