Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral: \(\int {xta{n^{ - 1}}xdx} \)

Short Answer

Expert verified

Apply integration by parts using \(ta{n^{ - 1}}x\)as a first function.

\(ta{n^{ - 1}}x\)is not subject to specify forward integration so while apply integration by parts, \(ta{n^{ - 1}}x\) should be taken as the first function.

Step by step solution

01

integration by parts

\(\begin{aligned}{l}\int x ta{n^{ - 1}}xdx &= ta{n^{ - 1}}x\int {xdx - \int {(\frac{d}{{dx}}(ta{n^{ - 1}}x)} } \int {xdx} )dx\\\int x ta{n^{ - 1}}xdx &= \frac{{{x^2}ta{n^{ - 1}}x}}{2} - \frac{1}{2}\int {\frac{{{x^2}}}{{1 + {x^2}}}dx} \\ &= \frac{{{x^2}ta{n^{ - 1}}x}}{2} - \frac{1}{2}{I_1}\end{aligned}\)

02

reduction of degree of numerator

\(\begin{aligned}{l}{I_1} &= \int {\frac{{{x^2}}}{{1 + {x^2}}}dx} &= \int {\frac{{({x^2} + 1) - 1}}{{1 + {x^2}}}dx} &= \int {dx - \int {\frac{{dx}}{{1 + {x^2}}}} } \\ &= x - ta{n^{ - 1}}x\end{aligned}\)

\(\begin{aligned}{l}I &= \int x ta{n^{ - 1}}xdx = \frac{{{x^2}ta{n^{ - 1}}x}}{2} - \frac{1}{2}(x - ta{n^{ - 1}}x)\\I &= \int x ta{n^{ - 1}}xdx &= \frac{{{x^2} + 1}}{2}ta{n^{ - 1}}x - \frac{x}{2} + c\end{aligned}\)

Hence, the solution of the given integral is: \(I = \int x ta{n^{ - 1}}xdx = \frac{{{x^2} + 1}}{2}ta{n^{ - 1}}x - \frac{x}{2} + c\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free