Chapter 6: Q42E (page 361)
41-46 use the comparison theorem to determine whether the given integral is convergent or divergent.
\(\int_1^\infty {\frac{{2 + {e^{ - s}}}}{x}} dx\)
Short Answer
The given integral diverges.
Chapter 6: Q42E (page 361)
41-46 use the comparison theorem to determine whether the given integral is convergent or divergent.
\(\int_1^\infty {\frac{{2 + {e^{ - s}}}}{x}} dx\)
The given integral diverges.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral \(\int\limits_0^{{\raise0.7ex\hbox{\(\pi \)} \!\mathord{\left/
{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{\(2\)}}} {{{\sin }^5}xdx} \)
Evaluate the integral:
\(\int\limits_0^{\frac{\pi }{2}} {si{n^2}x\,co{s^2}x\,dx} \)\(\)
Evaluate the integral:\(\int_0^1 {\frac{2}{{2{x^2} + 3x + 1}}} dx\)
Evaluate the integral\(\int {\frac{{\sqrt {2{y^2} - 3} }}{{{y^2}}}} dy\)
Write out the form of the partial fraction decomposition of the function (as in Example 6). Do not determine the numerical values of the coefficients.
(a)
\(\frac{{{x^4} - 2{x^3} + {x^2} + 2x - 1}}{{{x^2} - 2x + 1}}\)
(b)
\(\frac{{{x^2} - 1}}{{{x^3} + {x^2} + x}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.