Chapter 6: Q40E (page 317)
Use Exercise 36 to find \(\int {{x^4}{e^x}dx} \)
Short Answer
The value of \(\int {{x^4}{e^x}dx} \) is \({e^x}({x^4} - 4{x^3} + 12{x^2} - 24x + 24) + c\)
Chapter 6: Q40E (page 317)
Use Exercise 36 to find \(\int {{x^4}{e^x}dx} \)
The value of \(\int {{x^4}{e^x}dx} \) is \({e^x}({x^4} - 4{x^3} + 12{x^2} - 24x + 24) + c\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral :
\(\int {\frac{{{x^4}}}{{x - 1}}dx} \)
Evaluate the Equation \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {co{t^2}xdx} \)
Evaluate the integral\(\)\(\int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{{\mathop{\rm Sin}\nolimits} }^2}x - 9}}} .dx\)
Evaluate the integral\(\int {\frac{{\ln (1 + \sqrt {x)} }}{{\sqrt x }}} .dx\)
Write out the form of partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.
(a) \(\frac{{{x^6}}}{{{x^2} - 4}}\)
(b) \(\frac{{{x^4}}}{{\left( {{x^2} - x + 1} \right){{\left( {{x^2} + 2} \right)}^2}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.