Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral\(\)\(\int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{{\mathop{\rm Sin}\nolimits} }^2}x - 9}}} .dx\)

Short Answer

Expert verified

\(\int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{{\mathop{\rm Sin}\nolimits} }^2}x - 9}}} .dx = \frac{1}{6}\log |\frac{{\sin x - 3}}{{\sin x + 3}}| + c\)

Step by step solution

01

Step 1- (Find the integral)

\(\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{\sin }^2}x - 9}}.dx\)

Let \({\mathop{\rm Sin}\nolimits} x = t\)

Differentiating both sides with respect to x

\(\)\(\begin{aligned}{l}{\mathop{\rm Cos}\nolimits} xdx = dt\\dx = \frac{{dt}}{{\cos x}}\end{aligned}\)

\(\begin{aligned}{l}\int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{{\mathop{\rm Sin}\nolimits} }^2}x - 9}}} .dx = \int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{t^2} - {3^2}}}} .{\frac{{dt}}{{{\mathop{\rm Cos}\nolimits} x}}^{}}\\ = \int {\frac{1}{{{t^2} - {3^2}}}} .dt\end{aligned}\)

Using the formula,\(\)\(\begin{aligned}{l}\int {\frac{1}{{{x^2} - {a^2}}}} .dx = \frac{1}{{2a}}\log |\frac{{x - a}}{{x + a}}\frac{{ + c}}{{}}\\ = \frac{1}{{2*3}}\log |\frac{{t - 3}}{{t + 3}}| + c\\ = \frac{1}{6}\log |\frac{{{\mathop{\rm Sin}\nolimits} x - 3}}{{{\mathop{\rm Sin}\nolimits} x + 3}}| + c\end{aligned}\)

\(\)

Hence\(\int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{{\mathop{\rm Sin}\nolimits} }^2}x - 9}}} .dx = \frac{1}{6}\log |\frac{{{\mathop{\rm Sin}\nolimits} x - 3}}{{{\mathop{\rm Sin}\nolimits} x + 3}}| + c\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free