Chapter 6: Q3E (page 363)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_0^{\pi /2} {\sin } \theta {e^{\cos \theta }}d\theta \)
Short Answer
\(\int\limits_0^{\frac{\pi }{2}} {\sin \theta {e^{\cos \theta }}} d\theta = e - 1\)
Chapter 6: Q3E (page 363)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_0^{\pi /2} {\sin } \theta {e^{\cos \theta }}d\theta \)
\(\int\limits_0^{\frac{\pi }{2}} {\sin \theta {e^{\cos \theta }}} d\theta = e - 1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral: \(\int {\frac{{axdx}}{{{x^2} - bx}}} \)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int {\frac{{dt}}{{2{t^2} + 3t + 1}}} \)
Evaluate the integral\(\int_{\rm{1}}^{\rm{2}} {\frac{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ - 1}}} }}{{\rm{x}}}} {\rm{dx}}\)
Evaluate the integral:\(\int\limits_0^1 {\frac{{{x^3} - 4x - 10}}{{{x^2} - x - 6}}} dx\)
Evaluate the integral\(\int {x*{\mathop{\rm Sin}\nolimits} ({x^2})*{\mathop{\rm Cos}\nolimits} (3{x^2}).dx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.