Chapter 6: Q39E (page 317)
Use Exercise 35 to find \(\int {{{(\ln x)}^3}dx} \).
Short Answer
The value of \(\int {{{(\ln x)}^3}} dx\) is \(x((\ln x) - 3{(\ln x)^2} + 6(\ln x) - 6) + c\)
Chapter 6: Q39E (page 317)
Use Exercise 35 to find \(\int {{{(\ln x)}^3}dx} \).
The value of \(\int {{{(\ln x)}^3}} dx\) is \(x((\ln x) - 3{(\ln x)^2} + 6(\ln x) - 6) + c\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluating the integral \(\int {{{\tan }^5}} x{\sec ^3}xdx\)
Evaluate the Integral: \(\int {\frac{{1 - \sin x}}{{\cos x}}} dx\)
Evaluate the integral\(\int\limits_0^{{\pi \mathord{\left/
{\vphantom {\pi 4}} \right.
\kern-\nulldelimiterspace} 4}} {{{\tan }^4}tdt} \)
Write out the form of the partial fraction decomposition of the function (as in Example 6). Do not determine the numerical values of the coefficients.
(a)
\(\frac{{{x^4} - 2{x^3} + {x^2} + 2x - 1}}{{{x^2} - 2x + 1}}\)
(b)
\(\frac{{{x^2} - 1}}{{{x^3} + {x^2} + x}}\)
Evaluate the integral\(\int\limits_0^{{\pi \mathord{\left/
{\vphantom {\pi 4}} \right.
\kern-\nulldelimiterspace} 4}} {{{\sec }^4}\theta {{\tan }^4}\theta d\theta } \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.